衡水点睛大联考

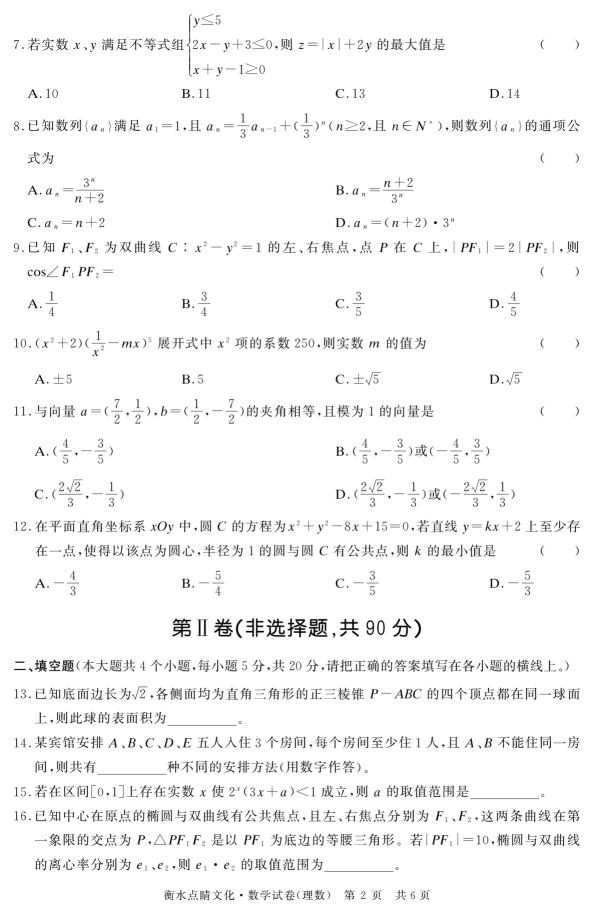
第四次联考·数学试卷(理数)

命题:衡水点睛文化编辑部

本试卷分第 Ⅰ 卷(选择题)和第 Ⅱ 卷(非选择题)两部分,总分 150 分,考试时间 120 分钟。

第 [卷(选择题,共60分)

题号	1	2	3	4	5	6	7	8	9	10	11	12
答案												
一、选择	₩(本)	大题共	12 个小	题,每小	题 5 分	,共 60	分。在	每小题	给出的	四个选了	页中,只	有一项
是符	合题目	要求的	(。)									
1.设集	合 <i>M</i> =	$\{x \mid x^2 -$	+3x + 2	<0},缜	€合 N =	$= \{ x \mid (\frac{1}{2}) \}$	$(\frac{1}{2})^x \leq 4$	} ,则 <i>M</i>	$\bigcup N =$			()
$\mathbf{A}.\left\{ x\right\}$	$ x \ge -$	-2}	Е	$\mathbf{S.}\left\{ x x\right\}$	>-1		C. { :	$x \mid x < -$	-1}	1	$\mathbf{D}.\{x\mid x$	≤ -2
2.若 x ∈	\in $(e^{-1},$	1), $a =$	$\ln x$, b	$=2\ln x$,	$c = \ln^3$	x, 则						()
A. a <	$\leq b \leq c$		E	s. c < a	$\leq b$		C.b	< a < c		I	$0.b \le c$	< a
3. 抛物组	线 y=4	x ² 关于	-直线 x	-y=0	对称的	加物线	的准线	方程是				()
A. <i>y</i> =	=-1		Е	3. $y = -$	$\frac{1}{16}$		C. <i>x</i>	=-1		I	0. x = -	$-\frac{1}{16}$
4.右图	是一个人	几何体的	的正(主)视图和	印侧(左)视图,	其俯视	图是面	积			
为 8√	√2 的矩∄	形,则该	几何体	的表面	积是			()		2	
A. 20	$+8\sqrt{2}$						B. 24	$4 + 8\sqrt{2}$			ᆜ -ᡬ	<u>- 2√2</u> —
C.8							D.16	6		正(主)视	图 侧	(左)视图
5.若函数	数 f(x)	同时具	有以下	两个性	质 : ①f	(x)是(禺函数;	②对任	意实数	[x,都7	$f(\frac{\pi}{4})$	+x)=
$f(\frac{\pi}{4}$	-x).	则 f(x)	的解析	式可以	是							()
A . <i>f</i> ((x) = co	os <i>x</i>					B. f	(x) = cc	$\cos(2x +$	$\frac{\pi}{2}$)		
C. f($(x) = \sin(x)$	1(4x+	$\frac{\pi}{2}$)				D.f	(x) = cc	os6 <i>x</i>			
6.已知1	命题 p	$\exists x_0$	$\in R$, e^x	-mx =	0,q:	$\forall x \in I$	$R, x^2 +$	mx+1	≥0,若	<i>p</i> ∨ (−	¬q)为作	段命题,
则实	数 m 的	取值范	围是									()
A. (-	$-\infty$,0)	$\bigcup (2, +$	$-\infty$)				B. [0	,2]				
C.R							D.Ø)				
			衡水	点睛文化	. • 数学i	式卷(理数	数) 第二	1 页 共	6 页			



- 三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明或演算步骤。)
- 17. (12 分)在 $\triangle ABC$ 中,角 A、B、C 所对的边分别为 a、b、c,函数 $f(x) = 2\cos x \sin(x A) + \sin A(x \in R)$ 在 $x = \frac{5\pi}{12}$ 处取得最大值。
 - (1)当 $x \in (0, \frac{\pi}{2})$ 时,求函数 f(x)的值域;
 - (2)若 a=7 且 $\sin B + \sin C = \frac{13\sqrt{3}}{14}$,求 $\triangle ABC$ 的面积。

- 18. (12 分)若 $\{a_n\}$ 是各项均不为零的等差数列,公差为 d, S_n 为其前 n 项和,且满足 $a_n^2 = S_{2n-1}$, $n \in N^*$ 。数列 $\{b_n\}$ 满足 $b_n = \frac{1}{a_n \cdot a_{n+1}}$, T_n 为数列 $\{b_n\}$ 的前 n 项和。
 - (I)求 a , 和 T ,;
 - (\parallel)是否存在正整数 m、n(1 < m < n),使得 T_1 、 T_m 、 T_n 成等比数列? 若存在,求出所有 m、n 的值;若不存在,请说明理由。

19. (12 分)三棱锥 P-ABC 中,底面 ABC 为边长为 $2\sqrt{3}$ 的正三角形,平 面 PBC 上平面 ABC, PB=PC=2, D 为 AP 上一点, AD=2DP, O 为 底面三角形中心。

 $A \longrightarrow B$

- (I)求证:*BD* 上 *AC*;
- (Π)设 M 为 PC 中点,求二面角 M-BD-O 的余弦值。

- 20. $(12 \, \mathcal{G})$ 已知点 A(-4,4)、B(4,4),直线 AM 与 BM 相交于点 M,且直线 AM 的斜率与直线 BM 的斜率之差为-2,点 M 的轨迹为曲线 C。
 - (I)求曲线 C 的轨迹方程;
 - ($\| \cdot \|$) Q 为直线 y=-1 上的动点,过 Q 做曲线 C 的切线,切点分别为 D 、E ,求 $\triangle QDE$ 的面积 S 的最小值。

21.(12 分)已知函数 $f(x) = \frac{1}{2} [t \ln(x+2) - \ln(x-2)]$,且 $f(x) \ge f(4)$ 恒成立。

(I)求 x 为何值时,f(x)在[3,7]上取得最大值;

(II)设 $F(x) = a \ln(x-1) - f(x)$,若 F(x)是单调递增函数,求 a 的取值范围。

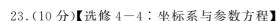
请考生在第 22~24 三题中任选一题做答,如果多做,则按所做的第一题记分。

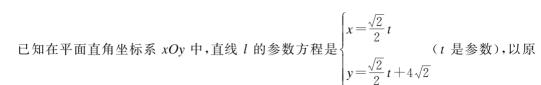
22.(10分)【选修 4-1:几何证明选讲】

如右图, AB 是 $\odot O$ 的直径, AC 是弦, $\angle BAC$ 的平分线 AD 交 $\odot O$ 于点 D, $DE \perp AC$, 交 AC 的延长线于点 E, OE 交 AD 于点 F。

(I)求证:*DE* 是⊙O 的切线;

(II)若
$$\frac{AC}{AR} = \frac{2}{5}$$
,求 $\frac{AF}{DF}$ 的值。





点 O 为极点, Ox 为极轴建立极坐标系, 圆 C 的极坐标方程为 $\rho=2\cos(\theta+\frac{\pi}{4})$.

- (1)求圆心 C 的直角坐标;
- (2)由直线 l 上的点向圆 C 引切线,求切线长的最小值。
- 24.(10分)【选修4-5:不等式选讲】

已知 f(x) = |2x-1| + ax - 5(a 是常数, $a \in R$)。

- (I)当 a=1 时求不等式 $f(x) \ge 0$ 的解集;
- (Ⅱ)如果函数 y = f(x)恰有两个不同的零点,求 a 的取值范围。

数学(理科)选做_____题:

衡水点睛大联考

数学・参考答案(四)

(理科)

- 1. A 【解析】 $M = \{x \mid -2 < x < -1\}, N = \{x \mid x \ge -2\}, \therefore M \cup N = \{x \mid x \ge -2\}.$
- 2. C 【解析】: $-\frac{1}{e} < x < 1$,: $-1 < a = \ln x < 0$. $2 \ln x < \ln x$,即 b < a,又 $a c = \ln x \ln^3 x = \ln x (1 \ln x) (1 + \ln x) < 0$,则 a < c,因此 b < a < c。
- 3.D【解析】抛物线 $x^2 = \frac{1}{4}y$,准线 $y = -\frac{1}{16}$,关于 x = y 对称的直线 $x = -\frac{1}{16}$ 为所求。
- 4. A【解析】由已知俯视图是矩形,则该几何体为一个三棱柱,根据三视图的性质,俯视图的矩形宽为 $2\sqrt{2}$,由面积 $8\sqrt{2}$ 得长为 4,则 $S = S_{\texttt{M}} + 2S_{\texttt{K}} = (8\sqrt{2} + 2 \times 2 \times 4) + 2 \times \frac{1}{2} \times 2\sqrt{2} \times \sqrt{2} = 20 + 8\sqrt{2}$ 。
- 5. C【解析】:f(x)为偶函数,而 B 为 $f(x) = -\sin 2x$ 为奇函数,所以排除 B,由 $f(\frac{\pi}{4} + x) = f(\frac{\pi}{4} x)$ 知,f(x)的对称轴 为 $x = \frac{\pi}{4}$,而 $x = \frac{\pi}{4}$ 是 $f(x) = \sin(4x + \frac{\pi}{2}) = \cos 4x$ 的对称轴,且为偶函数。
- 6.B【解析】若命题 p 为真,则 $m = \frac{e^x}{x}$,令 $y = \frac{e^x}{x}$,则 $y' = \frac{e^x(x-1)}{x^2}$, $y = \frac{e^x}{x}$ 在 $(-\infty,0)$ 上減函数,在(0,1)上为減函数,在 $(1,+\infty)$ 为增函数, $\therefore m \in (-\infty,0) \cup [e,+\infty)$;若 q 为真,则 $\triangle = m^2 4 \le 0$,即 $-2 \le m \le 2$;则 $\neg q$ 为 $m \in (-\infty,-2) \cup (2,+\infty)$ 。若 $p \lor \neg q$ 为真,则 $m \in (-\infty,0) \cup (2,+\infty)$;若 $p \lor \neg q$ 为假,则 $m \in [0,2]$ 。
- 7. D【解析】当 $x \ge 0$ 时,2y = -x + z 表示的是斜率为-1 截距为 z 的平行直线系,当过点(1,5)时,截距最大,此时 z 最大, $z_{\max} = 1 + 2 \cdot 5 = 11$;当 x < 0 时,2y = x + z,表示的是斜率为-1 截距为 z 的平行直线系,当过点(-4,5)时, $z_{\max} = 4 + 2 \cdot 5 = 14$ 。
- 8. B【解析】由 $a_n = \frac{1}{3} a_{n-1} + \left(\frac{1}{3}\right)^n (n \ge 2, n \in \mathbb{N})$,两边乘以 3^n 得 $3^n a_n = 3^{n-1} a_{n-1} + 1$ 。数列 $\{3^n a_n\}$ 是以 3 为首项,公 差为 1 的等差数列, $3^n a_n = 3 + (n-1) \times 1 = n + 2$ 。 所以 $a_n = \frac{n+2}{2^n}$ 。
- 9. B 【解析】由双曲线的定义知: $|PF_1| |PF_2| = 2a = 2$,又 $|PF_1| = 2|PF_2|$,所以 $|PF_1| = 4$, $|PF_2| = 2$;又 $|F_1F_2| = 2c = 2\sqrt{2}$,所以 $\cos \angle F_1 PF_2 = \frac{|PF_1|^2 + |PF_2|^2 |F_1F_2|^2}{2|PF_2| \cdot |PF_2|} = \frac{3}{4}$ 。
- 10. C【解析】若第一个因式取 2,第二个因式中项 x^2 为: $2C_5'x^{-2(5-r)}(-mx)'=2C_5'(-m)'x^{3r-10}$,由 3r-10=2得 r=4,系数为 $C_5^4=(-m)^4=5m^4$,因第二个因式中没有常数项,所以展开式 x^2 项的系数是 $2\times 5m^4=250$, $\therefore m=\pm\sqrt{5}$ 。
- 11. B【解析】方法一:(直接法)设所求向量 $e = (\cos\theta, \sin\theta)$,则由于该向量与 $a \setminus b$ 的夹角都相等,故

$$\frac{a \cdot e}{|a||e|} = \frac{b \cdot e}{|b||e|} \Rightarrow a \cdot e = b \cdot e \Rightarrow \frac{7}{2} \cos\theta + \frac{1}{2} \sin\theta = \frac{1}{2} \cos\theta - \frac{7}{2} \sin\theta \Rightarrow 3\cos\theta = -4\sin\theta, \text{所以}$$

$$\begin{cases} \sin\theta = -\frac{3}{5} \\ \cos\theta = \frac{4}{5} \end{cases}, \text{或} \begin{cases} \sin\theta = \frac{3}{5} \\ \cos\theta = -\frac{4}{5} \end{cases}, \text{可知 B 选项成立; 方法二: (数形结合法) 画出 } a \text{、b 的草图, 然后画} \end{cases}$$

O 1 2 3 x

-1
-2
-3

出($\frac{2}{3}\sqrt{2}$, $-\frac{1}{3}$),显然它与a、b的夹角不相等,逐一排除;方法三:(定性判断、验证法)若存在一向量c与a、b的夹角相等,则-c与a、b的夹角也一定相等,故应有2个向量,排除A、C, \because |a|=|b|, \therefore 若c与a 、b的夹角相等,由向量的夹角公式可得 $a \cdot c = b \cdot c$,显然($\frac{7}{2}$, $\frac{1}{2}$) \cdot ($\frac{2}{3}\sqrt{2}$, $-\frac{1}{3}$) \neq ($\frac{1}{2}$, $-\frac{7}{2}$) \cdot ($\frac{2}{3}\sqrt{2}$, $-\frac{1}{3}$),排除D。

12. A【解析】因为圆 C 的方程可化为: $(x-4)^2+y^2=1$,所以圆 C 的圆心为(4,0),半径为 1。因为由题意,直线

y = kx + 2上至少存在一点 $A(x_0, kx_0 + 2)$,以该点为圆心,1 为半径的圆与圆 C 有公共点,所以存在 $x_0 \in R$,使得 $AC \le 1 + 1$ 成立,即 $AC_{\min} \le 2$;因为 AC_{\min} 即为点 C 到直线 y = kx + 2 的距离 $\frac{|4k + 2|}{\sqrt{k^2 + 1}}$,所以 $\frac{|4k + 2|}{\sqrt{k^2 + 1}} \le 2$,

解得 $-\frac{4}{3} \le k \le 0$,所以 k 的最小值是 $-\frac{4}{3}$ 。

 13.3π 【解析】将三棱锥补形为正方体,如右图所示,则三棱锥 P-ABC 的外接球即为正方体的外接球, $\triangle ABC$ 的边长为 $\sqrt{2}$,由正方体的性质可知正方体的棱长均为 1,则正方体的体对角线长为 $\sqrt{3}$,外接球的半径为 $\frac{\sqrt{3}}{2}$,外接球的表面积为 $4\pi \times (\frac{\sqrt{3}}{2})^2 = 3\pi$ 。

- 14.114 【解析】 $C_5^3 \cdot A_3^3 + C_3^1 \cdot C_5^2 \cdot C_3^2 C_4^2 \cdot A_3^3 = 114$ 。
- 15.a < 1 【解析】由 $2^{x}(3x+a) < 1$ 得 $a < \frac{1-2^{x} \times 3x}{2^{x}} = 2^{-x} 3x$,在区间[0,1]存在实数 x 使得 $a < 2^{-x} 3x$ 即只要满足 $(2^{-x} 3x)_{max} > a$ 即可,而 $2^{-x} 3x$ 在区间[0,1]上为减函数,所以 $(2^{-x} 3x)_{max} = 1$,所以 a < 1。
- $16. (\frac{1}{3}, +\infty)$ 【解析】设椭圆与双曲线的半焦距为 c, $|PF_1| = r_1$, $|PF_2| = r_2$,由题意知 $r_1 = 10$, $r_2 = 2c$,且 $r_1 > r_2$, 2c < 10,由三角形两边之和大于第三边可知 $2r_2 > r_1$,即 2c + 2c > 10,于是 $\frac{5}{2} < c < 5$, $1 < \frac{25}{c^2} < 4$;又 $e_1 = \frac{2c}{2a} = \frac{2c}{r_1 + r_2} = \frac{c}{5 + c}$, $e_2 = \frac{2c}{2a} = \frac{2c}{r_1 r_2} = \frac{c}{5 c}$, $\therefore e_1 \cdot e_2 = \frac{c^2}{25 c^2} = \frac{1}{\frac{25}{2} 1} > \frac{1}{3}$ 。
- - $\therefore 2 \times \frac{5}{12}\pi A = 2k\pi + \frac{\pi}{2}$,其中 $k \in \mathbb{Z}$,即 $A = \frac{\pi}{3} 2k\pi$,其中 $k \in \mathbb{Z}$
 - $\therefore A \in (0,\pi), \therefore A = \frac{\pi}{3}$
 - $\therefore x \in (0, \frac{\pi}{2}), \therefore 2x A \in (-\frac{\pi}{3}, \frac{2\pi}{3})$
 - $\therefore -\frac{\sqrt{3}}{2} < \sin(2x A) \le 1, \text{即 } f(x) \text{ 的值域为} \left(-\frac{\sqrt{3}}{2}, 1\right]$ 6 分
 - (2)由正弦定理 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ 得, $\sin B + \sin C = \frac{b+c}{a}\sin A$

由余弦定得 $a^z = b^z + c^z - 2bc\cos A$ 得

- - 于是 $T_n = \frac{1}{2} \left[\left(1 \frac{1}{3} \right) + \left(\frac{1}{3} \frac{1}{5} \right) + \dots + \left(\frac{1}{2n-1} \frac{1}{2n+1} \right) \right] = \frac{n}{2n+1}$ 6 分
 - (Ⅱ)假设否存在正整数 $m \ n(1 < m < n)$,使得 $T_1 \ T_m \ T_n$ 成等比数列

- 由 $m \in N^*$, m > 1, 得 m = 2, 此时 n = 12
- 19.(Ⅰ)连结 AO 并延长交 BC 于点 E,连结 PE

: O 为正三角形 ABC 的中心, $: AO = 2OE$, 且 E 为 BC 中点
$\mathbb{Z} AD = 2DP$, $\therefore DO // PE$
$:PB=PC$,且 E 为 BC 中点, $:PC \perp BC$ 又平面 $PBC \perp$ 平面 ABC , $:PE \perp$ 平面 ABC
文十回 PBC 工十回 ABC
又 $AC \perp BO$, \therefore $AC \perp$ 平面 DOB
∴ AC⊥BD 6 £
(Ⅱ)由(Ⅱ)知, EA 、 EB 、 EP 两两互相垂直,且 E 为 BC 中点,分别以 EA 、 EB 、 EP 所在直线为 x 、 y 、 z 轴,建立如下图 空间直角坐标系,则
$A(3,0,0), B(0,\sqrt{3},0), P(0,0,1), D(1,0,\frac{2}{3}), C(0,-\sqrt{3},0), M(0,-\frac{\sqrt{3}}{2},\frac{1}{2})$
$\overrightarrow{BM} = (0, -\frac{3\sqrt{3}}{2}, \frac{1}{2}), \overrightarrow{DB} = (-1, \sqrt{3}, -\frac{2}{3})$
设平面 BDM 的一个法向量为 $n = (x, y, z)$,则 $\begin{cases} n \cdot \overrightarrow{DB} = -x + \sqrt{3} y - \frac{2}{3} z = 0 \\ n \cdot \overrightarrow{BM} = -\frac{3\sqrt{3}}{2} y + \frac{1}{2} z = 0 \end{cases}$
令 $y=1$,则 $n=(-\sqrt{3},1,3\sqrt{3})$
由(I)知 AC 上平面 DBO , \overrightarrow{AC} =(-3, $-\sqrt{3}$,0)为平面 DBO 的一个法向量 ························ 11 允
$\therefore \cos \langle n, \overrightarrow{AC} \rangle = \frac{n \cdot \overrightarrow{AC}}{ n \overrightarrow{AC} } = \frac{3\sqrt{3} - \sqrt{3}}{\sqrt{3 + 1 + 27} \cdot \sqrt{9 + 3}} = \frac{\sqrt{31}}{31}$
由图可知,二面角 $M-BD-O$ 的余弦值为 $\frac{\sqrt{31}}{31}$
20. 解:(I)设 $M(x,y)$,由已知得 $\frac{y-4}{x+4} - \frac{y-4}{x-4} = -2$ 22.
得 $x^2 = 4y$, 所以曲线 C 的轨迹方程为 $x^2 = 4y$ ($x \neq \pm 4$)
(Ⅱ)设 $Q(m,-1)$,因为切线斜率存在且不为 0 故可设切线斜率为 k ,则切线方程为 $y+1=k(x-m)$ ····································
$\begin{cases} y+1=k(x-m) \\ x^2=4y \end{cases}, \notin x^2-4kx+4(km+1)=0$
由相切得 $\triangle = 0$,即 $k^2 - km - 1 = 0$
把 $km+1=k^2$ 带入到 $x^2-4kx+4(km+1)=0$ 得 $x^2-4kx+4k^2=0$
即 $x=2k$,从而得到切点的坐标为 $(2k,k^2)$,在关于 k 的方程 $k^2-km-1=0$ 中 $\triangle'=m^2+4>0$
所以方程 $k^2-km-1=0$ 有两个不相等的实数根,分别记为 k_1 、 k_2 ,则有 $\begin{cases} k_1+k_2=m\\ k_1 \cdot k_2=-1 \end{cases}$
故 $QD \perp QE$, \triangle QDE 为直角三角形, $S = \frac{1}{2} \lceil QD \rceil \cdot \lceil QE \rceil$,记切点 $(2k,k^2)$ 到 $Q(m,-1)$ 的距离为 d
则 $d^2 = (2k-m)^2 + (k^2+1)^2 = 4k^2 - 4km + m^2 + (km+2)^2 = 4(k^2-km) + m^2 + k^2m^2 + 4km + 4$ 注意到 $k^2 - km - 1 = 0$,所以 $d^2 = (4+m^2)(k^2+1)$
故 $ QD = \sqrt{(4+m^2)(k_1^2+1)}, QE = \sqrt{(4+m^2)(k_2^2+1)}$
$S = \frac{1}{2} (4 + m^2) \sqrt{1 + 1 - 2k_1 \cdot k_2 + (k_1 + k_2)^2} = \frac{1}{2} (4 + m^2) \sqrt{4 + m^2} \geqslant 4$
即当 $m=0$,也就是 $Q(0,-1)$ 时, $\triangle QDE$ 的面积 S 有最小值 4 ···································
21. 解:(I) : $f(x) = \frac{1}{2} [t \ln(x+2) - \ln(x-2)]$,且 $f(x) \ge f(4)$ 恒成立
$f(x)$ 的定义域为 $(2,+\infty)$,且 $f(4)$ 是 $f(x)$ 的最小值
又: $f'(x) = \frac{1}{2} \left[\frac{t}{x+2} - \frac{1}{x-2} \right]$,: $f'(4) = 0$,解得 $t = 3$ ··································
$f'(x) = \frac{1}{2} \left[\frac{3}{x+2} - \frac{1}{x-2} \right] = \frac{x-4}{x^2-4}$
∴
衡水点睛文化・数学(理数)答案 第 3 页 共 4 页

f(x) $f(3) - f(7) = \frac{1}{2} [3\ln 5 - \ln 1] - \frac{1}{2} [3\ln 9 - \ln 5] = \frac{1}{2} [\ln 625 - \ln 729] < 0, \therefore f(3) < f(7)$ 即当 x=7 时, f(x) 取得在[3,7]上的最大值 $\nabla : F'(x) = \frac{a}{x-1} - \frac{x-4}{x^2-4} = \frac{(a-1)x^2 + 5x - 4(a+1)}{(x-1)(x^2-4)}$ 显然在 f(x)的定义域 $(2,+\infty)$ 上, $(x-1)(x^2-4)>0$ 恒成立 下面分情况讨论 $(a-1)x^2+5x-4(a+1)>0$ 在 $(2,+\infty)$ 上恒成立时, a 的解的情况 当 a-1 < 0 时,显然不可能有 $(a-1)x^2 + 5x - 4(a+1) > 0$ 在 $(2,+\infty)$ 上恒成立 当 a-1=0 时, $(a-1)x^2+5x-4(a+1)=5x-8>0$ 在 $(2,+\infty)$ 上恒成立 当 a-1>0 时,又有两种情况:① $5^2+16(a-1)(a+1)<0$: ② $-\frac{5}{2(a-1)}$ <2 $\pm (a-1) \cdot 2^2 + 5 \times 2 - 4(a-1) > 0$ 由①得 $16a^2 + 9 < 0$,无解;由②得 $a > -\frac{1}{4}$ a-1>0, a>1综上所述各种情况, 当 $a \ge 1$ 时, $(a-1)x^2 + 5x - 4(a+1) > 0$ 在 $(2, +\infty)$ 上恒成立 22. 解:(I)证明:连结 OD,可得 \(\sigma ODA = \(\sigma OAD = \sigma DAC \) \(\cdots \) \(\text{1} \) \(\text{1} \) \(\text{1} \) \therefore OD // AE 又 $AE \perp DE$ … $\therefore DE \mid OD$ (II)过 D 作 $DH \perp AB$ 于 H,则有 $\angle DOH = \angle CAB$ 设 OD = 5x,则 AB = 10x, OH = 2x $\therefore AH = 7x$ 又由 $\triangle AEF \circ \triangle DOF$,可得 $AF : DF = AE : OD = \frac{7}{5}$ $\therefore \frac{AF}{DE} = \frac{7}{5}$ 23. $\Re : (1) : \rho = \sqrt{2} \cos\theta - \sqrt{2} \sin\theta$, $\therefore \rho^2 = \sqrt{2} \rho \cos\theta - \sqrt{2} \rho \sin\theta$ ∴圆 C 的直角坐标方程为 $x^2 + v^2 - \sqrt{2}x + \sqrt{2}v = 0$ (2) 直线 l 上的点向圆 C 引切线长是 $\sqrt{(\frac{\sqrt{2}}{2}t - \frac{\sqrt{2}}{2})^2 + (\frac{\sqrt{2}}{2}t + \frac{\sqrt{2}}{2} + 4\sqrt{2})^2 - 1} = \sqrt{t^2 + 8t + 40} = \sqrt{(t+4)^2 + 24} \geqslant 2\sqrt{6}$ (II)由 f(x)=0 得,|2x-1|=-ax+5令 y=|2x-1|, y=-ax+5, 作出它们的图象, 可以知道 当-2 < a < 2 时,这两个函数的图象有两个不同的交点 衡水点睛文化・数学(理数)答案 第4页 共4页