# 2015 届高三上学期期末华附、省实、广雅、深中四校联考

## 数学(理科)

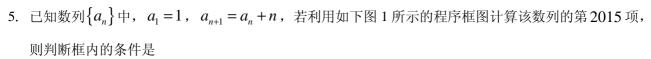
命题学校:广东广雅中学

本试卷共 4 页, 21 小题, 满分 150 分. 考试用时 120 分钟.

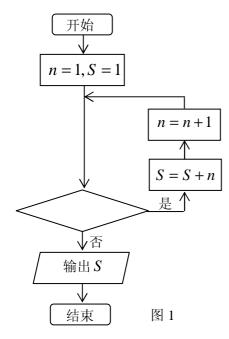
#### 注意事项:

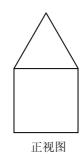
- 1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名、姓名、考号、座位号等相关信息填写在 答题卡指定区域内.
- 2. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净 后,再选涂其它答案;不能答在试卷上.
- 3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上; 如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答 案无效.
- 4. 考生必须保持答题卡的整洁.

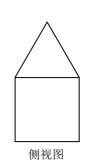
**参考公式:** 锥体的体积公式 $V = \frac{1}{3}Sh$ , 其中S 是锥体的底面积, h 是锥体的高.


- 一、选择题: 本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题
- 1. 若全集 $U = \mathbf{R}$ ,集合 $A = \{x \mid 1 < 2^x < 4\}$ , $B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0\}$ ,则 $A \cup \mathcal{C}_U B = \{x \mid x^2 1 > 0$

- A.  $\{x \mid -1 < x < 2\}$  B.  $\{x \mid -1 \le x < 2\}$  C.  $\{x \mid 0 < x < 1\}$  D.  $\{x \mid 0 < x \le 1\}$
- 2. 在复平面内,复数  $z = \frac{2i}{i-1}$  (*i* 为虚数单位)对应的点的坐标为


- A. (1,-1) B. (-1,1) C. (1,1) D. (-1,-1)
- 3. 已知变量x, y满足约束条件  $\left\{ y \ge \frac{1}{2}x \right\}$  ,则 $z = x + \frac{1}{2}y$ 的最大值为  $x + y \le 1$ 


  - A.  $\frac{1}{4}$  B.  $\frac{3}{4}$  C.  $\frac{5}{6}$  D.  $\frac{5}{2}$


- 4. 下列说法中正确的是
  - A.  $\exists x \in \mathbf{R}$ , 使得  $\sin x + \cos x = \frac{\pi}{2}$
  - B. "a=1" 是 "直线 ax + v = 1 与直线 x + av = 2 平行"的必要条件
  - C. 命题" $\forall x > 0$ ,  $e^x > x + 1$ "的否定是" $\forall x > 0$ ,  $e^x \le x + 1$ "
  - D. 函数  $f(x) = \lg \frac{1-x}{1+x}$  在其定义域内是奇函数



- A.  $n \le 2013$ ? B.  $n \le 2014$ ? C.  $n \le 2015$ ? D.  $n \le 2016$ ?







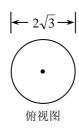
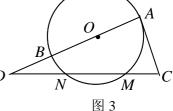



图 2


- 6. 如上图 2, 一个简单组合体的正视图和侧视图都是由一个正方形与一个正三角形构成的相同的图形, 俯视图是一个半径为 $\sqrt{3}$ 的圆(包括圆心),则该组合体的表面积等于
  - A.  $15\pi$
- B.  $18\pi$
- C.  $21\pi$
- D.  $24\pi$
- 7. 已知椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的离心率为 $\frac{4}{5}$ ,则以这个椭圆的焦点为顶点、顶点为焦点的的双曲线 的渐近线方程是

- A.  $y = \pm \frac{3}{4}x$  B.  $y = \pm \frac{4}{3}x$  C.  $y = \pm \frac{16}{9}x$  D.  $y = \pm \frac{9}{16}x$
- 8. 对任意实数 a,b, 定义运算 " ⊙ ":  $a \odot b = \begin{cases} b & (a-b \ge 1) \\ a & (a-b < 1) \end{cases}$ , 设函数  $f(x) = [(x^2 1) \odot (x + 4)] + k$ ,

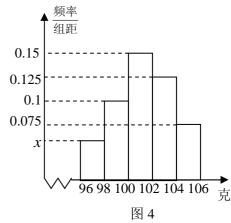
若函数 f(x) 恰有三个零点,则实数 k 的取值范围是

- A. (-1,2] B. (-2,1) C. (0, 1) D. [-2,1)
- 二、填空题: 本大题共7小题, 考生作答6小题, 每小题5分, 满分30分.
- (一) 必做题 (9~13 题)
- 9.  $(x-\frac{1}{2x})^6$  的展开式中 $x^2$  的系数是\_\_\_\_\_\_. **(用数字作答)**
- 10. 已知等比数列 $\{a_n\}$ 是递增数列,且 $a_1+a_4=18$ , $a_2\cdot a_3=32$ ,则数列 $\{a_n\}$ 的前n项和 $S_n=$ \_\_\_\_\_\_\_
- 11. 已知a、b 为非零向量,且a、b 的夹角为 $\frac{\pi}{3}$ ,若向量 $p = \frac{a}{|a|} + \frac{b}{|b|}$ ,则 $|p| = ______$ .

- 12. 棱长为 2 的正方体  $ABCD A_1B_1C_1D_1$  中,在四边形  $ABC_1D_1$  内随机取一点 M ,则  $\angle AMB \ge 90^\circ$  的 概率为\_\_\_\_\_\_.
- 13. 已知定义在**R** 上的函数 F(x)满足 F(x+y) = F(x) + F(y),且当 x > 0 时, F(x) < 0.若对任意的  $x \in [0,1]$ ,不等式组  $\begin{cases} F(2kx-x^2) < F(k-4) \\ F(x^2-kx) < F(k-3) \end{cases}$  恒成立,则实数 k 的取值范围是\_\_\_\_\_\_.
- (二)选做题(14~15题,考生只能从中选做一题)
- 14. **(坐标系与参数方程选做题)** 在极坐标系中,过点 $\left(2\sqrt{2}, -\frac{\pi}{4}\right)$ 作圆 $\rho = 4\cos\theta$ 的切线,则切线的极坐标方程是\_\_\_\_\_\_.
- 15. **(几何证明选讲选做题)** 如图 3,AB 为 $\odot$ O的直径,AC 切 $\odot$ O于 点 A,且  $AC = 2\sqrt{2}$  ,过 C 的割线 CMN 交 AB 的延长线于点 D,若 CM = MN = ND ,则 BD 的长等于\_\_\_\_\_\_\_.



- 三、解答题: 本大题共6小题, 满分80分. 解答须写出文字说明、证明过程和演算步骤.
- 16. (本小题满分 12 分)

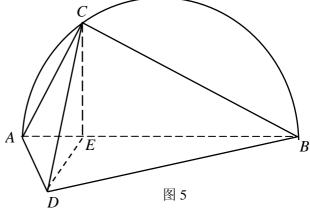

已知 $\triangle$  *ABC* 的内角 *A*, *B*, *C* 的对边分别是 *a*, *b*, *c* ,且 *a* = 3 , *b* = 5 , *C* =  $\frac{2\pi}{3}$  .

- (1) 求c和 $\sin A$ 的值;
- (2) 求  $\cos\left(2A + \frac{\pi}{6}\right)$ 的值.

#### 17. (本小题满分12分)

某工厂从一批产品中随机抽出 40 件进行检测. 下图 4 是根据抽样检测后的产品净重(单位: 克)数据 绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106].

- (1) 求图中x的值;
- (2) 若将频率视为概率,从这批产品中有放回地随机抽取3件,求至少有2件产品的净重在[96,98)的概率;
- (3) 若产品净重在[98,104) 为合格产品,其余为不合格产品. 从这 40 件抽样产品中任选 2 件,记 $\xi$  表示选到不合格产品的件数,求 $\xi$ 的分布列及数学期望.




#### 18. (本小题满分14分)

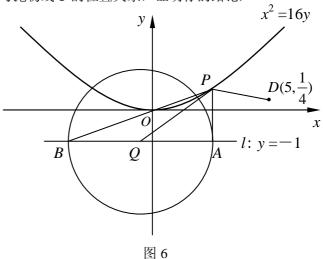
如图 5, 三棱锥 C - ABD 中, C 是以 AB 为直径的半圆上一点,点 E 在直径 AB 上,已知 AB = 10,

 $AC = 2\sqrt{5}$ , CE = 4,  $CD = 3\sqrt{2}$ ,  $AD = DE = \sqrt{2}$ .

- (1) 求证: *CE* 上平面 *ABD*:
- (2) 求直线 BC 与平面 ACD 所成角的正弦值.



### 19. (本小题满分 14 分)


设数列 $\{a_n\}$ 的前n项和为 $S_n$ ,满足 $a_{n+1} = \frac{3S_n}{n} + n + 1$ , $n \in \mathbb{N}^*$ ,且 $S_2 = 18$ ,令 $b_n = \frac{a_n}{n}$ .

- (1) 求 $b_1,b_2,b_3$ 的值;
- (2) 求数列 $\{b_n\}$ 的通项公式;
- (3) 求证: 对一切 $n \in \mathbb{N}^*$ , 有 $\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} < \frac{1}{2}$ .

#### 20. (本小题满分14分)

如图 6,设 P 是抛物线  $C: x^2 = 16y$  上异于坐标原点 O 的任意一点,过 P 作直线 l: y = -1 的垂线,垂足为 A ,直线 PO 与 l 相交于点 B .

- (1) 若定点D的坐标为 $(5,\frac{1}{4})$ ,求|PA|+|PD|的最小值;
- (2) 证明:以线段 AB 为直径的圆恒过某两个定点 M 、N ,并求出 M 、N 的坐标;
- (3) 设Q为线段AB的中点,试探究直线PQ与抛物线C的位置关系,证明你的结论.



#### 21. (本小题满分14分)

设 k > 0,函数  $f(x) = \frac{1}{2}x^2 + x + k \ln|x - 1|$ .

- (1) 讨论函数 f(x) 的单调性;
- (2) 当函数 f(x) 有两个极值点,且 $0 < \theta < \pi$  时,证明:  $(2k-1)\sin\theta + (1-k)\sin[(1-k)\theta] > 0$ .