

2014年硕士研究生入学复试大纲

学院	报考专业	复试科目
	一般力学与力学基础	
	固体力学	
	流体力学	力学综合复试
	工程力学	
	生物力学	
	桥梁与隧道工程	
	机械工程	
	风能工程	机械工程综合考试
	机械工程(专业学位)	
扣掘了和兴险	工业设计	工业况证用租 其加
机械工程学院	工业设计工程(专业学位)	<u>工业设计思想基础</u>
	工程热物理	
	热能工程	<u>传热学(51301)</u>
	制冷及低温工程	
	动力机械及工程	动力机械及工程专业综合考试
	打碎处循子和	动力机械及工程专业综合考试或
	环境能源工程 	<u>传热学(50108)</u>
	动力工程(专业学位)	动力机械及工程专业综合考试
		<u>传热学(51301)</u>
	车辆工程(专业学位)	汽车理论与汽车设计
	光学工程	光电检测技术与图像传感器应用
		<u>技术</u>
	光电子与光子学技术	光电子技术基础
精密仪器与光电子工程	仪器科学与技术	笔试:大学物理、面试:测控技
学院	仪器仪表工程(专业学位)	术与仪器
	生物医学工程	医用电子学及微机应用
	生物医学工程(专业学位)	
	光学工程(专业学位)	光学技术基础
电气与自动化工程学院	电气工程	电气控制
	电气工程 (专业学位)	或 <u>电力系统基础</u>
	控制科学与工程	微型计算机控制或过程参数检测
		<u>与控制</u> 或 <u>计算机软件技术基础</u> 三
		选一
		矩阵论与控制系统分析
	控制工程(专业学位)	微型计算机控制或过程参数检测

		与控制或计算机软件技术基础三
		选一
	电路与系统	
电子信息工程学院	信息与通信工程	一 信息与通信工程基础
	电子与通信工程(专业学位)	14.0. 0.014 14.14
	微电子学与固体电子学	一 微电子学与固体电子学综合
	集成电路工程(专业学位)	
	电磁场与微波技术	信号、系统与通信原理
	岩土工程	岩土工程
	结构工程	
	防灾减灾工程及防护工程	
	桥梁与隧道工程	钢筋混凝土结构
	工程技术与管理	
建筑工程学院	建筑与土木工程(专业学位)	
	水利工程	工程水文学 或 水工建筑物 或
	水利工程(专业学位)	港口工程学 三选一
	风能工程	风能工程学
	船舶与海洋工程	如药与安
	船舶与海洋工程(专业学位)	→ <u>船舶与海洋工程原理</u>
	建筑学	建筑快题设计、古代文献阅读释
	建筑兴(去川兴 台)	义、建筑构造及物理 按方向选
	建筑学(专业学位) 	一题
	城市规划(专业学位)	城市规划原理
建筑学院	风景园林学	- 风景园林快题设计
廷巩子阮 	风景园林 (专业学位)	
	城乡规划学	规划快题设计
	设计学	→ 艺术快题设计
	艺术(专业学位)	
	美术学	<u>创作</u>
	生物化学与分子生物学	<u>细胞生物学</u>
	材料学	<u>高分子化学与物理</u>
	化工过程机械	过程设备设计
	化学工程	反应工程
	化学工艺	化工热力学或化工分离过程
	生物化工	
 化工学院	生物工程(专业学位)	微生物学
1822 170	发酵工程	
	应用化学	精细有机合成化学及工艺学(精
		细化工方向)、理论电化学(电化
		学方向)、高分子化学与物理(高
		分子方向)
	工业催化	工业催化
	制药工程	制药分离工程

	制药工程(专业学位)	制药分离工程
	能源化工	反应工程
	生物医学工程	化工传递过程与分离方法
	食品科学	食品科学综合
	化学工程(专业学位)	化学工程与技术综合考试
	材料学	固态相变
		高分子化学
		
		材料化学
 材料科学与工程学院	材料加工工程	焊接方法及工艺
	生物医学工程	高分子化学
	材料工程(专业学位)	固态相变、高分子化学、无机材
		料专业基础、材料化学、焊接方
	1111717 (777) 177	法及工艺任选其一
	资产评估(专业学位)	金融与计量经济综合
		货币银行学(此领域为金融硕士
	金融(专业学位)	项目)
	系统工程	系统工程概论
	工业工程(专业学位)	
	物流工程(专业学位)	
	管理科学与工程	fate and NV also at the
 管理与经济学部	工商管理	→ <u>管理学基础</u> —
— •	公共管理	
	情报学	
	工商管理(专业学位)	笔试:时事政治论文;面试:综
	工间目理(专业子位)	合素质测试
	公共管理(专业学位)	笔试: 社会发展与时事政治; 面
		试:综合素质测试
	工程管理(专业学位)	笔试:政治经济管理知识;面试:
		综合素质
	基础数学	
	概率论与数理统计	<u>实变函数</u>
	应用数学	
	计算数学	最优化方法(线性规划、非线性
	运筹学与控制论	<u>规划)</u>
 理学院	理论物理	<u>电磁学</u>
理字 阮	生物物理学	生物信息学
	凝聚态物理	固体物理
	材料物理与化学	四件物生
	光学	<u>光学</u>
	化学	无机化学
	化学工程	<u>Minit</u>

	应用化学	无机化学
文法学院		商法学或经济法学或国际法学或
	法学	知识产权法学
	语言学及应用语言学	语言文字学
	外国语言学及应用语言学	口语、写作
	翻译硕士(专业学位)	英语翻译综合技能、口试
	中国现当代文学	中国现当代文学
教育学院	教育学	教育学基本理论
	应用心理学	普通心理学
	教育经济与管理	教育管理概论
	药物化学	<u>药物化学或计算化学</u>
	药剂学	<u>药剂学</u>
	生药学	<u>天然药物化学</u> 或 <u>药用植物与生</u> <u>药学</u>
药物科学与技术学院	药物分析学	<u>药物分析</u>
	微生物与生化药学	分子生物学
	药理学	细胞生物学
	药学(专业学位)	药物化学 或 药物分析
	卫生事业与药事管理	药物经济学
	热能工程	 传热学
	供热、供燃气、通风及空调工程	14300子
	市政工程	 ・水污染控制工程
	环境工程	<u>水乃采拴削工柱</u>
	环境科学	- 环境保护与可持续发展
环境科学与工程学院	环境信息与规划管理	
	室内环境学	建筑环境学
	环境能源工程	<u>传热学</u> 或 <u>水污染控制工程</u>
	环境工程(专业学位)	<u>传热学</u> 或 <u>环境保护与可持续发展</u>
		或水污染控制工程或基因工程
	遗传学	基因工程
	模式识别与智能系统	数据库与编译原理
 计算机科学与技术学院	计算机科学与技术	
11 异机件子刊以小子师	软件工程	
	计算机技术 (专业学位)	
软件学院	软件工程	数据库与编译原理
	软件工程(专业学位)	
马克思主义学院	中国哲学	<u> </u>
	科学技术哲学	科学技术哲学
	中共党史	中国近现代史
	马克思主义理论	科学社会主义理论
生命学院	生物学	<u>免疫学与病毒学</u>

课程编号: 50101

课程名称: 力学综合

力学学科按一级学科进行复试,其中主要包括一般力学,固体力学,流体力学等三个专业的内容。考生可以按自己的需求进行选择

- 一、 考试的总体要求
- 一般力学:

考察学生对理论力学基本概念、基本理论和基本方法的掌握程度。要求运用力学的基本理论和基本方法熟练进行研究对象的受力分析、静力学合成与平衡问题求解;运动分析、各运动量的求解:动力学分析及动力学综合问题的求解。

• 固体力学:

能运用材料力学知识分析解决工程结构模型简单的强度、刚度问题。

• 流体力学:

对流体力学的基本物理现象、基本概念和基本定律有正确的理解。对具体的流体问题能正确 判断流体及运动的基本类型。

- 二、 考试的内容:
- 一般力学:
- 1)静力学: 受力分析、物系的平衡问题(20~40%)
- 2)运动学:点的合成运动、刚体的平面运动及运动学综合应用问题(20~40%)
- 3)动力学:应用普遍定理求解动力学问题中的力和运动综合问题。(40 ~ 60%)
- 固体力学:
- 1)了解常用材料拉、压、扭下的基本力学性能和测试方法;
- 2)能熟练地作出杆件在各种变形下的内力图,计算其应力及变形,并进行强度和刚度分析。 3)能利用材料力学的基本知识计算基本组合变形问题的应力及变形,并应用第三或第四强度 理论进行校核
- 流体力学:
- 1)流体的基本方程组:连续性方程;运动方程;能量方程.
- 2) Navier-Stokes 方程组精确解:平行平板间的定常流动;同轴旋转圆筒间的定常流动;平行非定常流动.
- 3)层流边界层:边界层微分方程;边界层厚度;边界层动量积分关系式;边界层方程的相似解
- **4)**气体动力学:无粘性可压缩流体运动方程组;小扰动的传播;伯努利方程和气体动力学函数;一维等熵关系式;一维定常等熵管流;静止正激波。
- 5)湍流基础:湍流基本特征和物理本质;湍流平均方法;湍流平均方程;湍流模式理论;湍流边界层.
- 三、 试卷题型及比例

计算、理论分析题为主,有少量选择、填空题

四、 考试形式及时间

考试形式:笔试。考试时间:1.5小时。

课程编号: 50105

课程名称: 机制、机电、机设专业综合考试

一、考试的总体要求

掌握《机械制造技术基础》、《机械控制工程》、《现代设计方法》、《CAD/CAM》等专业课程的基础知识、基本理论和基本方法;初步具备分析、解决机械工程实际问题的能力;了解有关领域的最新发展。

- 二、考试的内容及比例: (在以下任选3部分)
- 1.机械制造技术基础(33%左右)

制造技术概述,机械加工方法与机械加工系统,切削原理,机械制造质量分析与控制,工艺规程设计,机械制造技术的发展与先进制造技术。

2.机械控制工程(33%左右)

控制系统的基本概念,控制系统数学模型,时域分析方法,频域分析方法,控制系统稳定性, 控制系统的设计与校正。

3.现代设计方法(33%左右)

系统化设计、创造性设计、优化设计、可靠性设计、有限元方法等的基本概念、原理和设计 步骤。

4.CAD/CAM(33%左右)

CAD 图形学基础, CAPP 基本原理, 数控编程技术, CAD/CAM 集成技术。

- 三、试卷题型及比例
- 1.客观题(单项选择,多项选择,填空,判断等)--占50%左右
- 2.主观题(名词解释,简答题,分析计算题等)--占50%左右

四、考试形式及时间

考试形式为笔试,考试时间为1.5小时。

课程编号: 50111

课程名称:工业设计思想基础

一、考试总体要求

要求掌握工业设计的基本理论与方法,通过解决"人一物一环境一社会"之间的各种矛盾,协调好他们之间的各种关系,从而建立正确的工业设计指导思想,具备分析、解决工业设计领域中实际问题的能力。

- 二、考试内容及比例
- 1. 工业设计历史沿革及设计理念的发展: 20%
- 2. 工业设计的内涵: 30%
- 3. 工业设计中人一物一环境一社会关系的协调方法: 30%
- 4. 人机界面设计: 20%
- 三、试卷题型及比例
- 1. 客观题 (单项选择、多项选择、填空、判断): 50%
- 2. 主观题(分析、选择、描述、表现): 50%
- 四、考试形式及时间

考试形式为笔试;考试时间为1.5小时。

课程编号: 51301 课程名称: 传热学(含换热器)

考试的总体要求

要求考生对传热的基础理论、基本概念和换热器的设计计算方法有较全面的了解;要求考生对当前传热学的主要研究方法和动态有所了解。

- 一、 考试的内容及比例: (重点部分)
- (一)《传热学》占80%
 - 1. 导热基础理论,稳态导热问题基本概念和计算,不稳态导热问题的基本概念和分析

方法,导热问题数值解法的原理,有限差分法;

- 2. 对流换热的基本概念,主要影响因素,边界层的形成和发展,流动边界层和热边界层的概念,对流换热准则数,准则方程,动量传递和热量传递的类比,管内紊流换热,相似理论:
- 3. 对流换热的机理和影响因素,管内受迫对流换热,进口段和充分发展段概念,管内流动换热计算,外掠圆管流动换热,自由流动换热,强化传热的基本途径;
 - 4. 凝结换热的概念和影响因素,沸腾换热的概念和影响因素,热管;
- 5. 热辐射的基本概念,基本定律,辐射换热计算,遮热板,角系数,气体辐射的特点, 火焰辐射和太阳辐射:
 - 6. 复合换热,换热的增强和削弱;
 - 7. 传质的概念和基本定律

(二) 换热器 占 20%

- 1. 换热器的类型和传热特点,对数平均温差;
- 2. 换热器的计算, 传热单元数, 影响换热器传热的因素;
- 二、 试卷题型及比例

名词解释、选择占 25%, 简答占 30%, 分析论述题占 45%

三、 主要参考教材

张熙民,任泽霈,梅飞鸣.传热学(第五版).北京:中国建筑工业出版社,2007.

课程编号: 课程名称: 动力机械及工程专业综合考试(复试)

一、 考试的总体要求

掌握《热能与动力机械测试技术》、《内燃机设计》等专业课的基础知识、基本理论和 方法;初步具有分析和解决本领域实际问题的能力;了解相关领域的发展现状和趋势。

- 二、 考试的内容及比例: (重点部分)
 - 1. 热能与动力机械测试技术 (50%左右)

测量仪器的主要性能指标及其动态特性;内燃机常用传感器的工作原理;温度、压力、流速、转速和功率等参数的测量方法;实验设计和数据整理的基本方法;测量误差的来源及相应的处理方法等.

2. 内燃机设计(50%左右)

内燃机设计的基本要求、主要结构尺寸和结构参数;内燃机活塞-曲柄运动学、动力学及多缸机平衡问题;曲轴、活塞、连杆等主要零件的设计要点;配气机构运动学、动力学及凸轮型线设计要点.

对于本科学习为非热能与动力工程专业的其他专业的考生,可以参照其相关专业的综合知识复试要求。

- 三、 试券题型及比例
 - 1. 客观题(单项选择,多项选择,填空,判断等)--占50%左右
 - 2. 主观题(名词解释,简答题,分析计算题等)--占50%左右
- 四、 考试形式及时间

考试形式为笔试。考试时间为 1.5 小时。

注:对于专业基础课考试科目为"404 内燃机原理"的考生按照上述大纲执行,专业基础课考试科目为其它科目的考生,参照所选择科目相应专业的业务课程大纲执行。

课程编号: 50108 课程名称: 传热学(含换热器)

考试的总体要求

本门课程主要考查学生对三种传热方式(导热、对流、辐射)基本原理的理解、掌握程度和运用能量守恒原理及有关传热方程解决实际问题的能力。(换热器部分总体要求不超出"传热学"教材中有关换热器的基本内容)

一、 考试的内容及比例: (重点部分)

指出应考范围、考试要求及各部分比例。

导热部分 (20~25分)

- 1. 导热理论基础;温度场、温度梯度,导热热流方程(傅立叶定律);导热系数,导热微分方程的分析与应用,单值性条件的内容与数学表达式;
- 2. 稳态导热分析与计算:一维稳态导热问题的分析与计算,有内热源及变导热系数的简单问题的分析、计算;接触热阻的概念。扩展表面(肋片)导热的理论分析与计算,肋效率。导热问题数值解,节点方程式。
- 3. 非稳态导热:与稳态导热的基本区别;集总参数分析法,诺膜图及应用,热扩散率,傅立叶数,毕渥数,冷却率与正规状况阶段概念;非稳态导热数值解,节点方程式,显式格式,稳定性条件,隐式格式。

对流换热部分(20~25分)

- 1. 对流换热理论基础:对流换热的基本含义及主要影响因素;牛顿冷却定律;流动边界层与温度边界层的概念与应用;层流边界层动量、能量微分方程、积分方程解的结果与分析;类比关系及应用;相似原理,相似准则及其物理意义。雷诺数,努谢尔特数,普朗特数,格拉晓夫数。
- 2. 对流换热计算:

单相对流换热

- a) 受迫对流:①外部流动,沿平板的流动与换热;外掠单管与管束的流动与换热,临界雷诺数。②内部流动;入口段与充分发展段,临界雷诺数,截面平均速度与温度;影响管内流动换热的各种因素,不同流态下的换热计算。
- b) 自然对流:大空间自然对流换热计算,边界层特点。混合对流换热的概念。相变换热
- a) 凝结换热的基本概念,珠状凝结、膜状凝结,层流膜状凝结努谢尔特解析解的几点假设, 努谢尔特解析解结果的分析。凝结换热的影响因素。
- b) 沸腾换热的基本概念,饱和沸腾,大空间沸腾,过热度(沸腾温差),沸腾曲线。
- c) 热管的基本工作原理

(所有准则关联式不要求记住,只需会用)

辐射换热部分(20~25分)

- 1. 热辐射理论基础:热辐射基本概念。黑体辐射的普朗克定律,维恩位移定律,斯蒂芬一波尔兹曼定律(四次方定律),兰贝特定律,黑体的波段辐射力计算。黑度(发射率),基尔霍夫定律,漫一灰表面。太阳与环境辐射。
- 2. 辐射换热计算:角系数;网络方法;空间热阻与表面热阻,灰表面(立体)封闭空腔的辐射换热计算,遮热板,复合(综合)换热系数。

热交换器部分(25~30分)

- 1. 传热过程,强化与削弱传热,总传热系数,改变传热系数的各种方式。
- 2. 换热器计算的基本方程,对数平均温差,对数平均温差法与ε -NTU 法,设计与校核计

算,污垢热阻。

二、 试卷题型及比例

名词解释: ~10%, 选择(单选或多选)~10%, 简答题: ~20%, 计算题: ~60%。

三、 考试形式及时间

考试形式:笔试。考试时间为 1.5 小时。

课程代码:

课程名称: 汽车理论与汽车设计

一、 考试的总体要求:

要求学生能够全面掌握"汽车理论"及"汽车设计"课程中的基本理论知识,试验方法,并能够分析和评价汽车及其各总成的结构与性能,合理选择设计方案及有关参数,掌握汽车主要零部件设计与计算方法和总体设计的一般方法。

二、 考试的内容及比例:

"汽车理论"部分:(占50%)

- 1. 汽车动力性的评价指标,驱动力与行驶阻力,驱动一附着条件与附着力,驱动力一行驶阻力平衡图与动力特性图。
- 2. 汽车燃油经济性的评价指标,各种行驶工况燃油经济性的计算,影响汽车燃油经济性的 因素,汽车动力性与燃油经济性试验。
- 3. 汽车动力装置参数的初步选择及利用燃油经济性一加速时间曲线确定动力装置参数。
- 4. 汽车的制动性:制动性的评价指标,制动时车轮受力,制动效能及其恒定性,制动时汽车的方向稳定性,前、后制动器制动力的比例关系,制动性试验。
- 5. 汽车的操纵稳定性:轮胎的侧偏特性,线性二自由度汽车模型对前轮角输入的响应,操纵稳定性与悬架、转向系及传动系的关系,操纵稳定性的电子控制系统,汽车的侧翻,汽车操纵稳定性的路上试验。
- 6. 汽车的平顺性:人对振动的反应和平顺性的评价,路面的统计特性,单质量系统的振动,车身与车轮双质量系统的振动,双轴汽车的振动,"人体一座椅"系统的振动,汽车平顺性试验。

"汽车设计"部分:(占50%)

- 1. 介绍汽车总体设计的任务与工作顺序,汽车型式、主要尺寸和参数,发动机及轮胎选择的方法,总布置草图的画法及各部件的布置方法,进行运动校核的方法。
- 2. 离合器设计的基本要求,离合器结构方案分析,主要参数的选择、设计与计算,扭转减振器和离合器操纵机构简介。
- 4. 机械式变速器布置方案分析及主要参数选择,同步器设计。
- 5. 万向节传动的运动分析和受力分析,万向节、传动轴及中间支承设计。
- 6. 主减速器设计, 差速器设计, 车轮传动装置型式及有关设计计算, 驱动桥壳设计。
- 7. 悬架主要性能参数的确定,弹性元件计算,独立悬架导向机构的设计,减振器参数的选 择。
- 8. 车架结构形式与尺寸选择,车架载荷工况及强度计算。
- 9. 转向系主要性能参数,循环球式转向器设计,动力转向结构形式和布置方案的选择及有关计数,转向梯形机构的优化设计,转向系中的防伤安全机构的有关计算。
- 10. 制动器设计,制动驱动机构的型式及计算。
- 三、 试卷题型及比例:

试题类型:分析、论述及回答问题(75%);计算题(25%)。试题类型及其所占比例可能会有少许调整。

四、 考试形式及时间:

考试方法采用闭卷笔试的方法:考试时间为1.5小时。

适用专业代码: 080300 适用专业名称: 光学工程

一、复试内容

包括专业能力考核和综合素质考核。

二、复试评分

复试总成绩 200 分,其中专业能力考核 80 分,综合素质考核 120 分。专业能力考核成绩包括外语听说能力测试 15 分、专业课笔试 65 分;综合素质考核成绩包括实验(实践)能力测试 30 分、综合面试 90 分。

考生复试总成绩应包括专业能力考核、综合素质考核两部分成绩之和,其复试总成绩低于 120 分视为复试成绩不合格。

三、专业知识测试大纲

课程编号: 50201

课程名称: 光电检测技术与图像传感器应用技术

(一) 考试总体要求:

- 1. 掌握光电检测基本技术,包括光电式传感器、光纤传感器及传感器预处理技术。
- 2. 掌握线阵及面阵 CCD 的基本工作原理及其应用技术。
- (二) 考试内容及比例:
- 1. 光电检测技术 (50%)
- (1) 光衍射和光扫描与图像扫描检测技术
- (2) 光纤传感技术
- (3) 光信息处理和像传感检测技术
- 2. 图像传感器应用技术(50%)
- (1) 光电转换的基本原理及特性
- (2) 典型线阵、面阵 CCD 的工作原理及其驱动器
- (3) CCD 输出信号的 A/D 数据采集原理与应用

考试题型为基本概念、分析与计算类型题。

- (三) 主要参考教材
- (1)《光电传感器应用技术》,王庆有,电子工业出版社,2007
- (2)《图像传感器应用技术》,王庆有,电子工业出版社,2003
- (3)《CCD应用技术》,王庆有,天津大学出版社,2000
- (4)《光电检测技术》,自编教材;
- (5)《近代光学测试技术》,杨国光,浙江大学出版社

四、考试形式及时间

外国语听力测试为笔试,考试时间为30分钟;

专业知识测试为笔试,考试时间一般为90分钟;

外语听说能力测试为面试,测试时间一般为10分钟;

实验(实践)能力测试为面试,测试时间一般为15分钟;

综合素质考核为面试,测试时间一般为20分钟。

课程编号: 50204

课程名称: 光电子技术基础

一、考试的总体要求

考查学生对激光及光电子学基本知识的理解程度。要求学生掌握光电子技术的物理基础:物理光学、激光原理和量子力学的基本概念、基础理论和基本知识,以及运用所学的理论知识解决实际问题的能力。

二、考试内容及比例

本课程满分 65 分(或由研究生院统一规定)。考试内容大致包括:物理光学、激光原理和量子力学。各部分要求的内容如下:

- 1. 物理光学: 参见初试大纲。
- 2. 激光原理: 参见初试大纲。
- 3. 量子力学: 光的波粒二象性, 德布罗意关系, 波函数和薛定谔方程, 态叠加原理, 定态, 束缚态, 定态薛定谔方程, 一维无限深势阱, 一维谐振子, 简并度, 量子力学中的力学量, 氢原子, 动量算符, 角动量算符, 算符的对易与泊松括号, 波矢的正一性与完备系, 测不准关系, 态的表象, 算符的表象, 久期方程, 非简并定态微扰论, 简并定态微扰论。

参考书:周世勋, <<量子力学教程>>(第二版), 高等教育出版社, 2009

三、试卷类型及比例

试题类型包括: 简答题、填空题、是非判断题、选择题等, 每年的试题类型从中选几类。

四、考试形式及时间

考试形式:笔试;考试时间:90分钟。

五、复试办法

- 1. 每年由研究生院统一规定. 或
- 2. 复试总成绩 200 分,复试总成绩低于 120 分视为复试成绩不合格。复试内容包括外国语听说能力测试(15 分)、专业知识笔试(65 分)(90 分钟)、报考专业的实验技能的动手能力(30 分)、综合面试(90 分)四部分。
- 3. 总成绩计算方法: 总成绩=(4门初试成绩之和/4)×初试成绩权重(70%)+复试成绩×复试成绩权重(30%)。

学科: 仪器科学与技术

一、考试的总体要求

主要考核考生的业务综合素质、能力和思想政治表现。包括对专业基础理论知识的理解程度和应用能力,动手实践能力,语言(含外语)表达能力以及应变适应能力等。

二、考试内容

- 1. 业务综合素质和能力(含思想政治表现等)(面试)。根据考生本科专业背景考察其专业综合素质、知识面、语言表达能力,以及考生本科毕业设计题目、内容理解、进展情况等,采用面试提问的方式进行。
- 2. 外语口语和听力。测试内容在考前由研究生院和学院统一确定。复试口试小组由几名精通外语口语的教师负责进行测试。
- 3. 动手实践能力。测控电路实验为主。

4. 专业基础知识(笔试)。为适应不同专业的考生,考试内容以本专业的基础--大学物理为主,注重基本概念,原理和方法,不考核复杂的理论推导。具体范围如下:

质点运动的描述;牛顿力学的基本定律;力学定理和守恒定律;刚体的定轴转动描述及定律、定理;陀螺;气体动理论;静电场;稳恒磁场;电磁感应;振动;波动;波动光学;狭义相对论基础知识;量子光学;激光。

专业基础知识(笔试)试卷题型为:

简答题 70%,分析计算题或设计论述题 30%。

(以上是大致比例,每年有所不同)

三、考试形式及时间

笔试时间90分钟。

四、主要参考教材

大学物理(上、下册). 大学物理编写组, 天津: 天津大学出版社, 2005.

课程编号:

课程名称: 生物医学电子学及微机在医学仪器中的应用

- 一、考试的总体要求
- 1. 掌握生物医学信号的性质和特点。
- 2. 掌握生物医学信号检测、处理电路的设计及测试。
- 3. 掌握常用生物医学模拟信号处理、变换电路的设计。
- 4. 掌握微机接口技术及其在医学仪器中的应用。
- 二、考试的内容及比例
- 1. 生物医学信号的性质和特点(20%)
- (1) 生物电信号的性质和特点;
- (2) 非电生物医学信号的性质与特点。
- 2. 信号放大与处理电路(20%)
- (1) 生物电放大器的分析、设计与测试。
- (2) 生物医学传感器接口电路的设计与分析。
- (3) 滤波器等信号调理电路的分析、设计与测试。
- 3. 信号变换电路(30%)
- (1) 电压/电流、电流/电压、电阻/电压等信号变换电路的分析、设计与测试。
- (2) 模数转换,数模转换的工作原理、选择与应用。
- (3) 信号产生电路的分析、设计与测试。
- (4) 电源与基准信号电路的设计与测试。
- 4. 微机在医学仪器中的应用(30%)
- (1) 微机接口技术
- (2) 微机在医学仪器中的应用设计
- 三、试券题型及比例

试卷包括基本概念题和综合分析题两部分,其中:

基本概念题(40%)题型包括:多项选择题,是非判断题,填空题,简答题等。

综合分析题(60%)题型包括:电路设计、分析或参数计算题。

四、考试形式及时间

业务综合素质和能力测试为面试,时间为15分钟;

专业知识考试为笔试,考试时间为90分钟。

外语口语测试为面试,测试时间为5分钟;

外语听力测试由研究生院统一组织。

李刚: 生物医学电子学,电子工业出版社,2008年9月。ISBN 978-7-121-07281-9。

李刚:现代测控电路,高等教育出版社,2004年3月。ISBN 7-04-013029-7。

李刚:新概念单片机教程,天津大学出版社,2004年8月。ISBN 7-5618-1992-7。(国家"十一五"规划教材)

李刚: 电路学习与分析实例解析, 电子工业出版社, 2008 年 4 月。ISBN 978-7-121-058003-5。

李刚: 51 系列单片机系统设计与应用技巧,北京航空航天大学出版社,2004 年 1 月。ISBN 7 -81077-411-5。

适用专业代码: 085202 适用专业名称: 光学工程

一、复试内容

包括专业能力考核和综合素质考核。

二、复试评分

复试总成绩 200 分,其中专业能力考核 80 分,综合素质考核 120 分。专业能力考核成绩包括外语听说能力测试 15 分、专业课笔试 65 分;综合素质考核成绩包括实验(实践)能力测试 30 分、综合面试 90 分。

考生复试总成绩应包括专业能力考核、综合素质考核两部分成绩之和,其复试总成绩低于 120 分视为复试成绩不合格。

三、专业知识测试大纲

课程编号: 课程名称:光学技术基础

(一) 考试总体要求:

分两个研究方向,一是光学工程,二是光电子与光子学技术。

研究方向一: 光学工程

- 1. 掌握光电检测基本技术,包括光电信息处理技术、光电衍射检测技术、光扫描检测技术 及光纤传感技术。
- 2. 掌握线阵及面阵 CCD 的基本工作原理及其应用技术。

研究方向二: 光电子与光子学技术

- 1. 掌握物理光学的基本概念,包括光的电磁理论、光的干涉和干涉以及光的偏振和晶体光学及其应用技术
- 2. 掌握激光技术的基本概念,包括激光器工作原理、类型,激光调制技术、激光的调 Q 原理和技术,激光锁模以及激光传输技术,了解激光电子技术应用技术。
- (二) 考试内容及比例:

考试内容包括"光电检测技术"、"图像传感器应用技术"、"物理光学知识"、"激光技术"四个部分,考生根据自己意愿,选择两个研究方向中的任意一个,其中,选择研究方向一(光学工程的考生),对应"光电检测技术(50%)"和"图像传感器应用技术(50%)"考试内容,选择研究方向二(光电子与光子学技术)的考生,对应"物理光学知识(50%)"和"激光技术(50%)"考试内容。

研究方向一: 光学工程

- 1. 光电检测技术
- (1) 光衍射和光扫描与图像扫描检测技术
- (2) 光纤传感技术

- (3) 光信息处理和像传感检测技术
- 2. 图像传感器应用技术
- (1) 光电转换的基本原理及特性
- (2) 典型线阵、面阵 CCD 的工作原理及其驱动器
- (3) CCD 输出信号的 A/D 数据采集原理与应用

研究方向二: 光电子与光子学技术

- 3. 物理光学知识
- (1) 光的电磁理论
- (2) 光的干涉和干涉技术
- (3) 光的偏振和晶体光学及其应用技术
- 4. 激光技术
- (1) 激光器的分类及其工作原理、
- (2) 激光调 Q、锁模技术的原理及激光调制技术
- (3) 激光的传输应用技术

考试题型为基本概念、分析与计算类型题。

四、考试形式及时间

外国语听力测试为笔试,考试时间为30分钟;

专业知识测试为笔试,考试时间一般为90分钟;

外语听说能力测试为面试,测试时间一般为10分钟;

实验(实践)能力测试为面试,测试时间一般为20-30分钟;

综合素质考核为面试,测试时间一般为20分钟。

注意:考试形式:笔试:考试时间:每年由研究生院统一规定。

《电气控制》复试大纲

一、适用范围

本复试大纲适用于申请报考"电机与电器"、"电力电子及传动技术"、"电工理论与新技术"等 专业方向的复试笔试。

- 二、考试内容
- 1. 电力半导体器件

晶闸管工作原理、特性和参数;功率场效应晶体管、绝缘栅双极型晶体管工作原理、特性和 参数。

2. 整流电路

单相半波、单相桥式全控、单相桥式半控、三相半波可控、三相桥式全控整流电路;变压器漏抗对整流电路的影响;整流电路的有源逆变工作状态。

3. 逆变电路

电压型和电流型逆变电路; PWM 控制的基本原理、控制方式; 生成方法。

4. 直流斩波电路

降压斩波电路; 升压斩波电路; 升降压斩波电路。

5. 直流电机

工作原理; 电枢反应; 运行原理; 电动机基本调速方法。

6. 变压器

单相变压器的基本方程式、等效电路、参数测定,外特性。

7. 异步电机

- 三相异步电动机的工作原理; 等效电路; 机械特性; 基本调速方法。
- 三、试券题型与比例

选择填空题 30%; 简答题 30%; 计算、论述题 (40%)。

四、考试形式与时间

笔试,考试时间90分钟。

《电力系统基础》复试大纲

一、适用范围

本复试大纲适用于申请报考"电力系统及其自动化"和"高电压与绝缘技术"专业方向的复试笔试。

- 二、考试的内容及大致比例
- 1. 电力系统的基本知识(5%)
- 2. 电力网元件的等值电路和参数计算(10%)
- (1) 电力线路的等值电路与参数计算;
- (2) 变压器的等值电路与参数计算:
- (3) 电网等值电路及其标幺值参数计算。
- 3. 简单电力系统的潮流计算(20%)
- (1) 单一元件的功率损耗和电压降落;
- (2) 开式网络的潮流计算;
- (3) 配电网络的潮流计算;
- (4) 简单闭式网络的的潮流计算。
- 4. 电力系统的正常运行与控制(15%)
- (1) 电力系统的无功功率平衡和电压调整与控制;
- (2) 电力系统的有功功率平衡和频率的调整控制;
- (3) 电力系统的能量损耗与降低损耗的措施。
- 5. 电力系统故障与实用短路电流计算(20%)
- (1) 三相短路电流的物理分析;
- (2) 简单系统三相短路电流的实用计算方法;
- (3) 对称分量法在不对称短路计算中的应用;
- (4) 同步发电机、变压器、输电线的正、负、零序等值电路与参数;
- (5) 简单电网的正、负、零序网络的制定方法;
- (6) 电力系统不对称短路的分析与计算;
- (7) 不对称短路时网络中的电流、电压计算。
- 6. 电力系统的主接线与电气设备选择(10%)
- (1) 主接线的基本形式:
- (2) 高压电气设备的原理及其选择。
- 7. 电力系统的继电保护(20%)
- (1)继电保护的作用及电力系统对保护的基本要求;
- (2) 继电保护的工作原理:
- (3)继电保护装置的构成及原理;
- (3) 输电线路的继电保护配置;
- (4) 发电机、变压器的继电保护配置。
- 三、试卷题型与比例

选择填空题: 20%; 简答题: 40%; 计算题: 40%。

四、考试形式与时间

笔试,考试时间90分钟。

课程编号: XXX 课程名称:矩阵论与控制系统分析

"矩阵论与控制系统分析"复试大纲

一、适用范围

本复试大纲适用于申请报考"控制科学与工程"学科,初试考数学卷的各专业考生的复试笔试。

二、考试的内容及比例

要求学生掌握矩阵论的基本理论,控制系统的数学模型,线性系统的时域分析法,并能进行应用。

- (1) 线性空间及其子空间、线性变换。
- (2) 矩阵的 Jordan 标准形,多项式矩阵及其初等变换,Smith 标准形及不变因子。
- (3)向量与矩阵的范数,几种常用的向量范数与矩阵范数,矩阵的谱半径及其性质。
- (4)哈密尔顿-凯莱定理,最小多项式及其性质。
- (5)自动控制系统的一般概念,控制系统微分方程的建立与求解,脉冲响应与阶跃响应, 控制系统的传递函数,控制系统的结构图。
- (6) 系统时间响应的性能指标,一阶系统与二阶系统时域分析,线性系统的稳定性分析(劳斯与赫尔维茨稳定判据)与稳态性能分析、稳态误差计算。

考试内容比例为"矩阵论"与"控制系统分析"约各占50%。

三、试卷题型与比例

概念题: 20%; 简答及分析题: 40%; 设计与计算题 40%。

四、考试形式与时间

笔试,考试时间90分钟。

"微型计算机控制"复试大纲

一、适用范围

本复试大纲适用于申请报考"控制理论与控制工程"专业方向的复试笔试。

二、考试的内容及大致比例

本复试课程主要考查学生在微型计算机控制系统组成与分类、微型计算机过程通道技术、数据处理技术、微机控制系统分析、设计与实现。微机控制经典设计方法等基本知识与综合应用能力。具体内容涉及:

- (1) 基本知识与基本概念(10%): 微型计算机控制系统基本概念、组成与分类。
- (2) 微型计算机过程通道技术(20%): 重点考查输入、输出过程通道技术,硬件、软件的系统分析与设计。
- (3) 数据处理技术(10%): 重点考查数字滤波、标度变换、线性化处理知识。
- (4) 数字控制的基本理论(10%): 采样定理、z变换及脉冲传递函数。
- (5) 数字控制系统分析(10%):稳定性分析、动态和稳态性能分析。
- (6) 数字控制及算法(20%): 重点考查数字控制算法,数字控制系统的离散化设计方法。

- (7) 微机控制系统的实现(20%): 重点考查简单对象微机控制系统的设计实现。
- 三、试卷题型与比例

概念题: 30%; 简答及分析题: 35%; 设计与计算题 35%。

四、考试形式与时间

笔试,考试时间90分钟。

"过程检测与控制"复试大纲

一、适用范围

本复试大纲适用于申请报考"检测技术与过程控制"专业方向的复试笔试。

二、考试的内容及大致比例

主要掌握生产过程重要参数的测量原理、测量方法及信号转换方法;掌握过程控制系统的特点、模型建立与分析、单回路控制系统、串级控制系统、前馈控制系统等基本知识与综合应用能力。具体内容涉及:

- 1. 检测技术部分(50%)
- (1) 温度参数检测: 重点考查接触式测温技术: 如: 热电偶测温技术、热电阻测温技术:
- (2)流量参数检测:重点考查经典式流量测量技术:如:差压式流量测量、速度式流量测量:
- (3)压力参数检测:重点考查电远传式压力变送器:如:压阻式、电容式、电感式以及振弦式压力变送器:
- (4) 物位参数检测: 重点考查静压式物位测量和电容式物位测量方法;
- (5) 有关的机械量参数检测:主要考查位移、速度、加速度有关测量方法,重点考查各类数字式测量方法。
- 2. 过程控制部分(50%)
- (1) 过程控制系统的特点: 重点考查系统组成、分类与特点等;
- (2) 数学模型: 重点考查建立数学模型的方法、模型的特点和分析等;
- (3) 单回路控制系统: 重点考查单回路控制系统的组成、特点和设计等;
- (4) 串级控制系统: 重点考查串级控制系统的组成、特点和设计等;
- (5) 前馈控制系统: 重点考查前馈控制系统的组成、特点和设计等;
- (6) 综合应用情况: 举例分析和设计等。
- 三、试券题型与比例

概念题: 30%; 简答及分析题: 35%; 设计与计算题 35%。

四、考试形式与时间

笔试,考试时间90分钟。

"计算机软件技术基础"复试大纲

一、适用范围

本复试大纲适用于申请报考"模式识别与智能系统"专业方向的复试笔试。

- 二、考试的内容及
- (1) 了解 C 语言及面向对象的程序设计语言的基本特征,掌握 C++程序设计的基本原理,并能实现基本的 C++程序设计;
- (2)了解基本的数据结构类型,掌握线性表、树、图的结构特点,掌握线性表、二叉树、图的基本使用方法,掌握基本的查找技术和排序方法;

- (3)了解操作系统的功能、类型和结构,掌握操作系统的进程、程序、设备和文件的管理 机制,熟练使用常见的操作系统。
- 三、试卷题型与比例

概念题: 30%; 简答及分析题: 35%; 程序设计题: 35%。

四、考试形式与时间

笔试;考试时间:90分钟。

课程编号:

课程名称: 信息与通信工程基础

一、考试的总体要求

考察学生应达到工科院校本科电子信息类《信号与系统》、《通信原理》和《数字电路》课程教学大纲规定的基本要求;对所学基本知识、基本理论能熟练掌握并具有正确计算、应用能力。

二、考试内容及比例

本考试课程包括"信号与系统 "、"通信原理"和"数字电路"三部分内容。其中"信号与系统 "和"通信原理"二者选一,但必须与初试科目不同,"数字电路"为必选科目。

第一部分:信号与系统部分(约占50%)

- (一)信号与系统的基础知识(5~10%)
- 1、基本 信号及其两种(函数表示式和波形图)描述方法;
- 2、信号的基本运算;
- 3、线性系统的基本性质。
- (二)连续系统的时域分析(5~10%)
- 1、零输入响应和零状态响应:
- 2、冲激响应和阶跃响应;
- 3、卷积及其性质。
- (三)连续信号与系统的变换域分析(10~20%)
- 1、周期信号的傅里叶级数及其频谱;
- 2、信号的傅里叶变换及其性质;
- 3、取样信号、取样信号的频谱与取样定理:
- 4、周期和非周期信号通过线性系统的频域分析;
- 5、拉普拉斯变换及其性质:
- 6、信号通过线性系统的 S 域分析;
- 7、拉普拉斯变换与傅里叶变换的映射关系。
- (四)离散信号与系统分析(5~10%)
- 1、离散时间信号及其运算;
- 2、离散卷积:
- 3、Z变换及其性质:
- 4、离散系统的 Z 变换分析法。
- (五)系统函数(5~10%)
- 1、系统函数的零极点与系统响应之间的关系;
- 2、系统的稳定性及其判断方法;
- 3、系统的框图、信号流图表示及系统模拟。
- (六)连续与离散系统的状态变量分析(5~10%)
- 1、状态、状态变量与状态方程的基本概念;

- 2、连续与离散状态方程的建立方法;
- 3、描述系统的状态方程与输入-输出方程之间的关系。

第二部分:通信原理部分(约占50%)

- 1、通信的基本概念:定义、系统模型、性能分析、随机过程的基本概念、白噪声的概念和特点、信道特性、信道容量公式。5%
- 2、模拟通信系统:幅度调制和角度调制的时域和频域分析,产生和解调方法,带宽和功率的计算,噪声性能分析。频分复用。5%
- 3、信源编码:抽样定理、PCM 和 Δ M 的编译码原理、时分复用。10%
- 4、数字信号的传输原理:基带传输的常用码型、无码间串扰基带系统传输特性设计、奈奎斯特准则、眼图和均衡;基带传输系统的性能分析、载波传输的二进制数字调制和解调方法、匹配滤波器、最佳接收的基本概念、二进制调制系统最佳接收机性能分析、多进制数字调制的基本原理、产生和解调方法、各种数字调制的带宽计算;了解现代数字调制技术。15%
- 5、同步原理: 载波同步、位同步、帧同步的基本原理和实现方法。5%
- 6、信道编码:差错控制技术,几种常用的检错码,线性分组码、循环码的原理和编解码方法。 10%

第三部分:数字电路部分(约占50%)

- 1、数制(十进、二进、十六进等)、码制(反码、补码、BCD 码、格雷码等)的变换,逻辑代数基本定理、定律,卡诺图的应用,逻辑函数的化简及变换、等式证明; 10%
- 2、TTL、CMOS集成门、触发器的原理、功能、输入/输出特性及使用,施密特电路、单稳态电路、振荡电路的原理、参数计算及应用; 10%
- 3、组合逻辑电路的分析和设计,常用组合逻辑器件的功能、扩展、应用; 10%
- **4**、时序逻辑电路的分析和设计,常用时序逻辑器件(计数器较多)的功能、应用,序列码发生器的分析和设计;**15%**
- 5、各种存储器的原理、功能、扩展应用,可编程逻辑器件的简单应用。5%
- 注:以上比例仅供参考;数字电路试题及答题一律使用符合国家标准 GB/T4728.12-1996《电气简图用图形符号 第 12 部分:二进制逻辑元件》所规定的符号。

三、试卷题型及比例

1、选择、填空题:10%;2、解析题15%;3、分析题30%;4、设计题40%;5、其他5%。

注:以上比例仅供参考,综合题型是不同部分内容或不同题型的混合,在试卷中会经常出现。 四、考试形式及时间

考试形式为笔试,考试时间 1.5 小时,满分 65 分。

五、参考书目

- 1、《信号与线性系统分析(第四版)》,吴大正主编,高等教育出版社;
- 2、《现代通信原理》第二版,沈保锁、侯春萍主编,国防工业出版社,2006,北京;
- 3、《数字逻辑电路》(第二版), 刘常澍等主编, 高等教育出版社, ISBN: 978-7-04-030696-5。

课程编号:

课程名称: 微电子学与固体电子学综合

本复试考试由两部分组成,请考生根据自己的具体情况任选一部分进行答题。

第一部分: 半导体集成电路复试大纲(参加微电子学复试的考生参考)

一、考试的总体要求

"半导体集成电路"是微电子技术专业的主干课程。本大纲包括"微电子器件基础(晶体管原理)"、"半导体集成电路"。目的是考察考生对基本理论、基本知识、基本技能及分析问题和解决问题的能力。

- 二、考试内容及比例
- (一) 微电子器件基础(晶体管原理)(45%)
- 1、PN 结及二极管
- (1) PN 结基本结构和偏置;
- (2) PN 结电流及非理想因素;
- (3) PN 结击穿机理。
- 2、双极晶体管
- (1) 双极晶体管中的工作原理;
- (2) 晶体管电流增益;
- (3) 非理想效应:
- (4)等效电路和频率特性。
- 3、金属-氧化物-半导体场效应晶体管基础
- (1) 双端 MOS 结构;
- (2) MOSFET 基本工作原理;
- (3) 信号限制特性。
- 4、金属-氧化物-半导体场效应晶体管概念深入
- (1) 非理想效应;
- (2) 阈值电压的修正;
- (3) 附加电学效应。
- (二) 半导体集成电路(55%)
- 1、MOS 反相器及其基本逻辑单元

E/D 反相器、CMOS 反相器、自举反相器、动态反相器、 NMOS 逻辑结构、传输门逻辑。

2、导线模型及寄生参数

互连参数、集总式模型、分布式模型

3、CMOS 组合逻辑门的设计

静态 CMOS 组合逻辑、动态 CMOS 组合逻辑。

4、时序逻辑电路设计

静态锁存器和寄存器、动态锁存器和寄存器、流水线、非双稳时序电路。

5、数字电路中的时序问题

数字系统的时序分类、同步设计、自定时电路设计、时钟的不确定性。

6、设计运算功能块

数字处理器结构中的数据通路、加法器、乘法器、移位器。

- 三、试卷题型及比例
- 1、选择,填空题: 15%;
- 2、简答题: 30%;
- 3、论述题: 40%;
- 4、综合题: 15%。
- 四、考试形式及时间

考试形式为笔试,考试时间 1.5 小时,满分 65 分。

五、参考书目

- 1、半导体物理与器件, 美 Neamen 著, 赵毅强等译, 电子工业出版社;
- 2、微电子技术基础,曹培栋编著,电子工业出版社;
- 3、数字集成电路--电路、系统与设计,周润德等译,电子工业出版社;
- 4、半导体集成电路、朱正涌编著,清华大学出版社。

第二部分:薄膜电子技术复试大纲(参加固体电子学专业复试的考生参考)

一、考试的总体要求

"薄膜电子技术"是微电子学与固体电子学专业的主干课程。本课程的考试目的是考察学生对基本理论、基本知识、基本技能的掌握情况,考察学生分析问题解决问题的能力。

- 二、考试内容及比例
- 1、薄膜的制备技术:
- 1) 真空技术基础:

真空的基本知识, 真空的获得, 真空度的表征和检测。

2) 物理气相沉积镀膜技术:

真空蒸发镀膜原理,蒸发源类型及原理,蒸发特性及参数,合金及化合物蒸发。

溅射镀膜类型及原理、特点, 溅射特性参数。

离子镀膜原理、特点。

3) 化学气相沉积镀膜技术:

不同类型化学气相沉积镀膜方法原理及特点

常压化学气相沉积,低压化学气相沉积,等离子增强化学气相沉积,有机金属化学气相沉积, 光化学气相沉积。

4) 溶液镀膜法:

化学镀,溶胶-凝胶法,LB膜的制备原理和特点。

- 2、薄膜形成理论:
- 1)薄膜的形成过程,薄膜的形成与生长形式。热适应系数,热力学界面能理论,原子聚集理论。
- 2) 薄膜的结构与缺陷:

薄膜的组织结构、晶体结构、表面结构、薄膜的缺陷及产生机理。

- 3、薄膜结构与化学组分检测方法:
- X 射线衍射法,扫描电子显微镜法,俄歇电子能谱法,
- X 射线光电子能谱法, 检测原理与特点。
- 三、试卷题型及比例
- 1、选择,填空题: 15%;
- 2、简答题: 30%:
- 3、论述题: 40%:
- 4、综合题: 15%。

四、考试形式及时间

考试形式为笔试,考试时间 1.5 小时,满分 65 分。

五、参考书目

薄膜物理与技术, 杨邦朝等, 电子科技大学出版社。

课程编号:

课程名称:信号、系统与通信原理

一、考试的总体要求

"信号与系统"和"通信原理"课程是电子信息类各专业的专业基础课程,也是国内各高校相应专业的主干课程之一。要求考生熟练地掌握这两门课程所讲述的基本概念、基本理论和基本分析方法,并利用这些经典理论分析、解释和计算一些实际问题。

二、考试的内容及比例

本考试课程包括"信号与系统"和"通信原理"两部分内容。

第一部分:信号与系统部分(约占总分的50%)

- (一)信号与系统的基础知识(5~10%)
- 1、基本信号及其两种(函数表示式和波形图)描述方法;
- 2、信号的基本运算;
- 3、线性系统的基本性质。
- (二)连续系统的时域分析(5~10%)
- 1、零输入响应和零状态响应:
- 2、冲激响应和阶跃响应;
- 3、卷积及其性质。
- (三)连续信号与系统的变换域分析(10~20%)
- 1、周期信号的傅里叶级数及其频谱;
- 2、信号的傅里叶变换及其性质;
- 3、取样信号、取样信号的频谱与取样定理;
- 4、周期和非周期信号通过线性系统的频域分析;
- 5、拉普拉斯变换及其性质;
- 6、信号通过线性系统的 S 域分析;
- 7、拉普拉斯变换与傅里叶变换的映射关系。
- (四)离散信号与系统分析(5~10%)
- 1、离散时间信号及其运算;
- 2、离散卷积:
- 3、Z变换及其性质:
- 4、离散系统的 Z 变换分析法。
- (五)系统函数(5~10%)
- 1、系统函数的零极点与系统响应之间的关系;
- 2、系统的稳定性及其判断方法;
- 3、系统的框图、信号流图表示及系统模拟。
- (六)连续与离散系统的状态变量分析(5~10%)
- 1、状态、状态变量与状态方程的基本概念;
- 2、连续与离散状态方程的建立方法:
- 3、描述系统的状态方程与输入-输出方程之间的关系。

第二部分:通信原理部分(约占50%)

- 1、通信的基本概念: 定义、系统模型、性能分析、随机过程的基本概念、白噪声的概念和特点、信道特性、信道容量公式。5%
- 2、模拟通信系统: 幅度调制和角度调制的时域和频域分析,产生和解调方法,带宽和功率的计算,噪声性能分析。频分复用。5%
- 3、信源编码: 抽样定理、PCM 和Δ M 的编译码原理、时分复用。10%

- 4、数字信号的传输原理:基带传输的常用码型、无码间串扰、奈奎斯特准则、眼图和均衡; 基带传输系统的性能分析、载波传输的二进制数字调制和解调方法、匹配滤波器、最佳接收 的基本概念、二进制调制系统最佳接收机性能分析、多进制数字调制的基本原理、产生和解 调方法、各种数字调制的带宽计算;了解现代数字调制技术。15%
- 5、同步原理:载波同步、位同步、帧同步的基本原理和实现方法。5%
- 6、信道编码:差错控制技术,几种常用的检错码,线性分组码、循环码的原理和编解码方法。 10%
- 三、试卷题型及比例

1、选择、填空题:10%2、解析题15%3、分析题30%4、设计题40%5、其他5%

注:以上比例仅供参考,综合题型是不同部分内容或不同题型的混合,在试卷中会经常出现。

四、考试形式及时间

考试形式为笔试,考试时间 1.5 小时,满分 65 分。

- 五、参考书目
- 1、《信号与线性系统分析(第四版)》,吴大正主编,高等教育出版社;
- 2、《现代通信原理》第二版,沈保锁、侯春萍主编,国防工业出版社,2006,北京。

课程编号:

课程名称: 岩土工程

一、考试的总体要求

考察学生对岩土工程专业基础知识及概念的掌握程度:包括土力学的基本原理;常用试验方法及试验原理;岩土工程中的设计计算方法;常用的地基处理方法及原理等。

二、考试内容及比例

土的物理性质及工程分类,包括土的形成;土的组成,土的物理特性,土的工程分类等,占 10-20%。地基应力分析,包括:土体的自重应力计算,基底压力,地基附加应力,有效应力原理等,占 10-20%。土的渗透性与渗流分析,包括:土的渗透性,渗透力及渗透变形等,占 0-10%。地基变形分析,包括土体压缩性,实验方法及压缩指标,太沙基一维固结理论等,占 0-20%。土的强度特性,包括:莫尔-库仑强度准则,抗剪强度测定方法,土体强度特性的有关问题等,占 10-20%。土的动力性质,占 0-10%。土压力,包括:朗肯库仑土压力理论及土压力计算等,占 10-20%。土坡稳定分析,包括:粘性土和无粘性土坡稳定的常用分析方法等,占 0-10%。地基承载力,包括:地基的破坏模式,浅基础的临塑荷载、临界荷载,地基极限承载力理论等,占 0-10%。地基处理,常用的地基处理方法,适用条件和基本原理,0-20%。

三、试卷类型及比例

问答题 100%

四、考试形式及时间

考试形式为笔试,考试时间为1.5小时左右。

课程编号:

课程名称:钢筋混凝土结构

一、考试的总体要求

要求掌握混凝土结构构件的基本原理以及考试内容要求的结构构件的基本计算方法,能准确运用重点章节的计算公式进行构件设计,并熟悉有关的截面和配筋等构造措施。

二、考试内容及比例

(1)混凝土结构的基本计算原则

建筑结构的功能要求和结构极限状态的概念;失效概率和可靠指标的概念;荷载以及材料强度的标准值、设计值和分项系数的关系。

(2)轴心受力构件的承载力

配有纵筋和普通箍筋(或螺旋式箍筋)的轴心受压柱的特点和承载力计算。

(3)受弯构件正截面承载力

梁的正截面破坏形态;正截面受弯承载力计算的基本假定;矩形截面配筋计算和承载力校核方法,适用条件及基本构造要求。

(4)受弯构件斜截面承载力

梁斜截面破坏的形态及影响斜截面受剪承载力的主要因素;截面限制条件及最小配箍率;有腹筋梁斜截面受剪承载力的计算方法及其适用条件;抵抗弯矩图,纵筋的截断和弯起的原则。

(5)偏心受力构件的承载力

偏心受压构件的受力破坏形态及分类;偏心受压长柱的纵向弯曲;偏心矩增大系数和附加偏心矩的意义;大偏心受压构件正截面承载力计算。

(6)受扭构件承载力

变角度空间桁架模型的基本假定; 弯剪扭构件按规范的配筋计算原则。

(7)混凝土构件的变形和裂缝宽度验算

受弯构件的短期刚度和长期刚度以及挠度验算的概念,最小刚度原则;最大裂缝宽度验算的概念。

(8)预应力混凝土构件

预应力混凝土的基本概念; 预应力损失的种类和减少损失的措施; 轴心受拉先张法构件 各阶段的应力分析。

考试内容着重基本概念和基本计算方法的理解与运用。考试大纲的覆盖面大约为指定主要参考书的80%。答题要求符合《混凝土结构设计规范》。

三、试卷类型及比例

试卷题型分问答题、选择题、改错题等。问答题、选择题和改错题着重了解考生对基本概念的掌握和理解的深度,计分约占全部考题的 90%。另外,有适量的与基本构造措施有关的考题,以了解考生是否能在构件设计中正确理解构造措施。一份试卷中,问答题、选择题、改错题不一定同时出现。

四、考试形式及时间

考试形式: 闭卷笔试,可用计算器; 考试时间: 1.5 小时左右

参考书: 混凝土结构原理(第四版)、王铁成编著、天津大学出版社、2011.9

课程编号:

课程名称:工程水文学

一、 考试的总体要求

水文学是研究地球上各种水体的一门科学,它研究各种水体的存在、循环和分布,探讨水体的物理和化学特性,以及它们对环境的作用,包括它们和生物的关系。工程水文学则是应用水文知识进行工程建设,主要研究与水利工程的规划、设计、施工和运营管理有关的水文问题。因此工程水文学以水文学的基本概念、基本原理和基本方法为主,要求学生掌握工程水文学的基本内容和分析方法,并能进行基本的水文分析计算。

- 二、 考试内容及比例(重点部分)
- 1、水文循环和水量平衡(10%)

水文循环的基本过程, 水量平衡方程式的基本形式。

2、河川基础知识(20%)

包括河流的基本特征、径流形成的基本过程以及径流的主要影响因素、降雨的类型以及表示方法、区域面平均雨量的计算方法等。

3、水文测验(10%)

包括水文测站的布设,水位、流量以及泥沙观测的基本方法。

4、产汇流过程分析计算(20%)

包括流域产流的基本方式及其基本特征,蓄满产流的产流量、超渗产流的产流量、河道汇流和流域汇流计算的基本方法。

5、设计洪水计算(20%)

包括洪水及其基本要素、设计洪水计算的基本途径、由流量资料推求设计洪水的基本方法、统计参数及其对频率曲线的影响等。

6、年径流的分析计算(20%)

包括年径流的基本特征、设计保证率、设计年径流的计算等。

三、 试卷题型及比例

主要是基本概念、基本原理的判断简述题,以及基本方法的实际应用分析计算题。其比例各占 50%左右。

四、 考试形式及时间

考试形式为笔试,考试时间为1.5小时左右。

课程编号:

课程名称: 水工建筑物

- 一、考试的总体要求
- 1、 对混凝土重力坝、拱坝、土石坝、水闸、岸边溢道和水工隧洞的工作原理及工程条件有 较深理解,对其它水工建筑物的基本形式和工作原理有一般的了解。
- 2、 根据工程任务和具体条件,初步掌握水利枢纽布置的要求和方法,会选择水工建筑的形式,确定其基本尺寸和会拟定其主要细部构造。
- 3、 会运用基本理论,选择合理的设计条件,进行各种水工建筑物的一般水力计算,稳定计算和强度校核等。
- 4、 了解水工建筑物设计时所需的原始资料,设计阶段程序及内容。对水工建筑物的运用、管理和观测也应有了解。
- 二、考试内容及比例
- 1、 了解水利事业在国民经济中的地位和作用; 水利枢纽的概念, 水工建筑物特点, 水利工

程分等和水工建筑物分级,以及分等分级的意义。占15%左右。

- 2、 掌握水工建筑物传统的安全系数设计法,可靠度设计法,优化设计法及抗震动力设计法等基本概念及特点。占 5%左右。
- 3、掌握作用于重力坝上的主要荷载、荷载组合及安全系数的选取,掌握稳定分析常用的几个计算公式和相应采用的安全系数,并加以分析比较,各种应力分布规律及影响坝体应力分布的各种因素;重力坝剖面尺寸的拟定原则、方法及控制数据的选用;掌握泄水重力坝的工作特点及泄水方式,单宽流量的选择,泄水重力坝剖面尺寸的拟定原则,以及孔口布置和孔尺寸的决定等;泄水重力坝消能原理着重挑流与底流消能;重力坝(含溢流坝)构造原理和地基处理;宽缝重力坝优点与结构特点;空腹重力坝结构特点;浆砌重力坝构造特点;辗压混凝土重力坝特点和构造。占 15-30%。
- 4、 拱坝工作特点,分析地形、地质对拱坝应力和坝肩岩体稳定及拱坝布置的影响; 拱坝荷载特点,温度荷载要领及计算和对应力分析的影响; 应力分析拱冠梁法原理,荷载分配特点及联立方程建立; 坝肩局部稳定,整体稳定的计算方法以及改善坝肩稳定性的技术措施; 拱坝池水的特点和党见的几种泄水方式; 拱坝的缝和拱坝与河岸的连接。占 15-20%。
- 5、 土石坝断面基本尺寸的选择,土石坝的渗流分析,应掌握不透水地基上的均质坝、有限深透水地基上均质、心墙(带截水墙)和斜坝等几种典型情况;土石坝的坝坡稳定,着重园弧法和折线法;筑坝材料及土料压实标准设计;防渗设备、排水过渡层和反滤层,坝与地基、河岸及其他建筑的连接;地基处理和土坝裂缝与控制措施;混凝土面板堆石坝特点和基本尺寸的选择。占 15-20%。
- 6、 水闸孔口设计堰型选择,闸底板高程以及孔口尺寸拟定;掌握水闸地下轮廓设计,包括形式选择,尺寸拟定,排水位置的确定及细部构造;闸底渗流的流网法和直线比例法及防止闸底渗流的工程措施;闸下泄流特点,水闸下游消能入解决方式;闸室稳定计算,以沿闸基机的抗滑稳定为重点;闸室结构计算,含闸室受力后工作特点,计算图形及解题的途径。占10-15%。
- 7、 正槽溢洪道的布置,陡槽设计的消能形式;常见的高速水流特殊物理现象,含冲击波、水流渗气、脉动、振动和空化空蚀;侧槽溢洪道运用条件和侧槽中水流特点;非常溢洪道要领及类型。占 10-15%。
- 8、 水式压力隧道的明流隧洞布置的特点及选线,水工隧洞体形设计(进口建筑物的形式和构造,洞身的断面形状)及水力计算;各种作用荷载对衬砌的影响,尤其要注意山岩压力,弹性抗力的物理概念;水工隧道的衬砌计算,着重圆形有压隧洞单层衬砌的计算方法;有关喷锚支护的基本概念。占10-15%。
- 9、 闸门的工作条件,露顶闸门,深孔闸门的工作和布置特点,深孔闸门经常出现的问题和应注意的事项;闸门的选择。占5%左右。
- 10、渠道及渠系建筑物和过渡建筑物等的功能,类型和工作原理,占5%左右。
- 11、水利枢纽布置设计原则,及设计阶段、坝址、坝轴线、坝型选择和枢纽布置,水利枢纽 对环境的影响。占 5%左右。
- 12、水工建筑物原理及原型观测结合实例作一般了解。
- 三、 试卷类型及比例
- 1. 概念题(含填空题、多项选择) 占15分
- 2. 简答题 占 15 分
- 3. 问题论述及计算题 占 20 分
- 四、 考试形式及时间

笔试,时间为1.5 小时左右。

课程名称:港口工程学

课程编号:

一、考试的总体要求

掌握港口水工建筑物上的主要作用、作用组合及计算方法;各类港口水工建筑物,包括重力式码头、板桩式码头、高桩式码头和防波堤等,主要结构型式、特点、基本构造和基于可靠度理论的设计与计算方法。

二、考试内容及比例

码头的分类和作用荷载,包括:码头分类及其组成,作用及其作用效应组合,主要作用的计算方法等,占 15-30%。重力式码头,包括:重力式码头的结构型式及其特点,重力式码头的构造,重力式码头的计算等,占 15-30%。板桩码头,包括:板桩码头的结构型式及其特点,板桩码头的构造,板桩码头的计算等,占 15-30%。高桩码头,包括:高桩码头的结构型式及其特点,高桩码头的构造,高桩码头的结构布置,高桩码头的计算等,占 15-30%。防波堤,包括:防波堤的类型及其特点,直立堤上的波浪力、直立式防波堤的设计与计算,斜坡式防波堤的设计与计算等,占 15-30%。

三、试卷类型及比例

问答题 100%

四、考试形式及时间

考试形式为笔试,考试时间为1.5小时左右。

课程名称:风能工程学

- 一、考试的总体要求
- 1、了解国家关于风力发电工程建设和管理的基本方针、政策和法规;
- 2、掌握风能资源评估的基本理论和方法,并能合理选择风电场;
- 3、了解不同类型风机基础的优缺点;
- 4、熟悉风力机设计的空气动力学基本理论和风力机组的基本结构;
- 5、了解风力发电系统的构成及运行模式
- 二、考试内容及比例
- 1、风能利用基本概况(5%-10%)

包括风能利用的历史和现状; 风能利用的特点

2、风能资源(15%-20%)

包括风的形成;环流和风带;风力等级;风的测量;风能资源的计算;中国风能资源分布;中国风能区划

3、场址选择(15%-20%)

包括风电场位置选择概述;风电场宏观选址;风电场微观选址;

4、风机基础设计(15%-20%)

包括荷载设计: 板状基础; 多桩基础; 混凝土单桩基础; 桁架或塔架基础海上风机基础

5、风力机的机理和结构(20%-30%)

包括风力机的工作原理;风力机的空气动力学概念;风力机的主要部件;风力机的功率;风力发电机组设备的选型

6、风力发电系统的构成及运行评估(15%-20%)

包括独立运行的风力发电系统;并网运行的风力发电系统;风电场的经济及环境效益评估;海上风电场

7、风能政策设计(5%)

包括风能政策分类和评价准则; 主要风能政策简介; 各国风能政策实践

- 三、试券类型及比例
- 1、概念题(含填空题、多项选择) 占 20%
- 2、简答题 占 30%
- 3、问题论述及计算题 占 50%

四、考试形式及时间

笔试,时间为1.5小时左右。

适用专业代码: 适用专业名称: 船舶与海洋结构物设计制造

课程编号: 课程名称:船舶与海洋工程原理

一、 考试的总体要求

系统掌握船舶工程或海洋工程的基础知识与基本原理,并且具有综合运用基本理论分析和解 决工程实际问题的能力。

基础知识包括材料力学部分的强度理论、结构力学的基本方法、船舶与海洋工程静力学的基础知识。

船舶工程部分包括基本知识、性能的基本原理及计算,结构与强度的基本原理及计算。 海洋工程部分包括海洋桩基平台与海洋移动式平台的基本原理与计算方法。

- 二、考试内容及比例
- 1、 基础部分(30%)(必选)
- (1) 材料力学强度理论(10%)
- (2) 结构力学力法与位移法(10%)
- (3) 船舶浮性与初稳性的基本概念与基本知识(10%)
- 2、 船舶工程部分(70%)(船舶工程方向限选)
- (1) 船体结构的一般知识及船底结构和甲板结构(20%)
- (2) 船舶总布置图的组成、特点、识读及绘制(10%)
- (3) 船舶初稳性、抗沉性的基本理论及计算(20%)
- (4) 船体总强度计算的基本理论及方法(20%)
- 3、 海洋工程部分(70%)(海洋工程方向限选)
- (1)海洋平台的类型、适用性、设计条件、选型、主尺度的确定(10%)
- (2)海洋平台的载荷种类、载荷计算、载荷组合原则、载荷工况的选择(10%)
- (3)海洋桩基平台基桩刚度计算、桩基承载力计算(10%)
- (4)海洋桩基平台结构静力分析与强度校核(15%)
- (5)海洋活动式平台总体性能及其计算(10%)
- (6)海洋活动式平台工作原理、沉垫结构设计与强度校核、结构整体静力分析(15%)
- 三、 试卷的题型及比例
- 1、 问答题: 70%

2、 计算题: 30%

四、 考试形式及时间

笔试: 1.5 小时左右。

适用专业名称:建筑学专业——建筑技术方向 课程名称:建筑快题设计

一、考试的总体要求

- 1、考生应运用建筑设计原理的基本理论知识,独立完成一项包括外部环境规划在内的建筑设计方案。
- 2、方案应正确安排建筑与环境的关系作出环境设计,并依据设计任务的要求达到合理的功能布置和流线组织。
- 3、设计方案应具有较好的空间组合,并能体现建筑的性格特征,达到形式与功能的统一。
- 4、设计方案应具有工程技术方面的可能性,主体结构布置合理,层高确定得当,构造合理。
- 5、设计造型较好,图面表达准确,具有较熟练的表现技巧,符合制图规范要求。
- 6、图面一律用白纸黑绘。

二、考试的内容及比例

考试范围为中小型民用建筑设计或旧建筑的扩建、改造设计及其环境设计,规模根据题目难易程度决定。

三、试券题型及比例

- 1、题型以一般功能要求为主,便于充分发挥考生的设计技能。如属特殊功能要求,另附参考资料。
- 2、试题结构包含:环境设计(总平面及周围环境)、单体建筑设计(平、立、剖面及透视)、及表现技能等三个方面。

四、考试形式及时间

考试形式为笔试。

考试时间:连续3小时。

五、主要参考书目

- 1、《建筑空间组合论》彭一刚著,中国建筑工业出版社。
- 2、《建筑:形式、空间和秩序》【美】沸郎西斯、DK、钦著,邹德侬、方千里译。
- 3、《建筑设计资料集》(第二版)1-9集,中国建筑工业出版社。
- 4、相关建筑设计防火规范等。

适用专业名称:建筑学专业——建筑历史与理论方向 课程编号:2063 课程名称:古代文献阅读释义

一、 考试的总体要求

考生应对有关中国历史尤其是建筑历史的古代文献资料能够进行检索、阅读、理解、分析和研究,其中包括各类建筑如宫宅、坛庙、园林与城市,以及古代建筑造型、设计、施工、美

学等方面的文献资料。

二、考试的内容及比例

对文言文中比较常用的名词、动词、助词、副词等能够予以解释和运用;对涉及古代建筑的游记、日记、笔记等文章能够断句、标点,并改写成通俗的白话文。 试题不出难题、偏题。

- 三、试卷题型及比例
- 1、 名词解释: 30%
- 2、 标点或辩析: 20%
- 3、翻译:50%

四、考试形式及时间

考试形式为笔试,考试时间为1.5个小时。

适用专业名称:建筑学专业——建筑技术方向 课程名称:建筑构造及物理

- 一、考试的总体要求
- 1、考试内容包括建筑构造和建筑物理两个部分。
- 2、要求回答问题应概念清楚、全面,计算准确;绘图应整洁、清晰、完整,并根据题目具体要求,对必要的数字、尺寸、标注及各部分(或各构件)之间的关系,以及所使用的材料做法作出正确的表达和说明。
- 二、考试内容及要求:

建筑构造:

(一) 考试要求:

- 1、掌握中小型民用建筑构造基本原理和方法;掌握常用建筑材料的种类及其基本性能;了解建筑工业化以及大型公共建筑构造的一般构造原理和基本构造方法;
- 2、能根据方案设计图综合运用建筑构造理论和方法,建筑材料及一般结构知识进行一般中、小型民用建筑的构造设计、完成平、立、剖面及部分构造详图的设计。了解和掌握建筑施工图的基本要求和绘制方法;

(二)考试的内容:

- 1、基本概念:建筑物的分类与分等;建筑物的构造组成及其作用;影响建筑构造的因素与构造设计原则;建筑统一模数制与定位线。
- 2、地基与基础:
- 1) 地基、基础、地基允许承载力及建筑荷载的概念、关系; 地基、基础设计应满足的基本条件及依据资料。
- 2) 天然地基与人工地基的概念、分类。基础的组成、埋深、影响埋深的因素;基础的材料和类型;砖墙下条形基础的底宽与断面形式的形成。
- 3、墙:
- 1)墙体的类型与设计要求。砖石砌筑墙:砖墙的构造类型、材料、厚度、组砌方式、细部构造及增强墙身整体刚度的措施;空斗砖墙、石墙的砌筑要求及适用性。隔墙:隔墙特点及构造设计要求;隔墙的类型、立筋式隔墙、砌筑式隔墙和条板隔墙的材料和构造做法。
- 2) 墙面抹灰: 抹灰的作用及要求, 普通抹灰的种类和做法。

- 3)墙体节能设计的基本概念,常用材料及构造做法。
- 4、地板层及楼板层:
- 1) 地板层的作用、组成和设计要求; 常用的地面材料和做法。
- 2) 楼板层的组成和设计要求,楼板的材料和类型。钢筋混凝土楼板的结构类型、结构布置、预制钢筋混凝土楼板的布置和板缝处理;顶棚与一般吊顶构造。雨蓬、阳台结构处理及细部构造。
- 5、屋顶:
- 1)屋顶设计要求、类型;屋顶坡度及表示方法;屋面排水方式及选择。
- 2) 坡屋顶:坡屋顶的组成;屋顶支承结构类型;平瓦屋面及檐口构造做法;吊顶作用及构造做法;坡屋顶的保温、通风及隔热措施。平屋顶:平屋顶的组成;柔性、刚性防水屋面的构造;屋顶保温、隔热及构造做法;平屋顶的排水。
- 6、楼梯与台阶:
- 1)楼梯的组成与形式;楼梯的一般尺度及确定依据。钢筋混凝土楼梯:现浇钢筋混凝土楼梯、小型装配式楼梯的结构与构造,细部构造。
- 2) 室外台阶与坡道及其无障碍设计。
- 7、门窗:
- 1)门窗材料、构造设计要求。木门窗:开启方式、组成、尺度要求;平开木门窗、中悬木窗、弹簧门构造。其他材料门窗:金属及塑料门窗材料、尺度及构造、组合与连接方法。
- 2) 门窗节能设计基本概念。特种门窗构造(保温门窗、隔声门窗、防火门窗)。
- 8、建筑工业化:
- 1)建筑工业化的含义和基本特征(四化一改);工业化建筑的类型。
- 2) 砌块建筑:特点、设计要求;常用砌块的类型及砌块墙体构造。
- 3) 大板建筑:特点、设计要求;内外墙板、楼板及屋面板类型(材料、受力、复合);节点构造,外墙板缝防水构造(材料防水、构造防水)。
- 4) 装配式框架板材建筑:骨架结构系统,框架结构特点;按材料分类,按施工方法分类;结构布置及传力系统;柱网形式及常用尺寸;框架节点连接;框架结构外墙构造,外墙的类型及材料(砖、砌块、板材及幕墙),外墙的搁置位置与建筑立面造型,外墙与外墙、外墙与框架的连接;板柱结构系统及其外墙,板柱结构组成形式和力的传递,板柱的节点连接,墙体材料及构造。
- 5) 大模板建筑:特点、设计要求;类型、墙体材料及节点构造;
- 6) 滑模建筑:特点、设计施工要求及类型。
- 7) 升板建筑:特点、施工要求;楼板类型及构造节点。
- 8) 盒子建筑:特点及类型;组装方式与构造。
- 9、多高层建筑:
- 1) 多高层建筑的分类、结构体系及基本造型。高层建筑的特殊构造: 楼板材料与构造; 外墙材料与构造要求。地下室防潮、防水构造。
- 2) 高层建筑楼、电梯、自动扶梯的设计及其防火要求。建筑防雷设施。
- 10、大跨建筑屋顶:
- 1) 大跨度屋顶结构类型及其应用(建筑形式、结构特点、主要构造尺寸及尺度)。
- 2)屋面构造(卷材、刚性防水或涂料防水、金属屋面);屋面排水;保温和隔热构造。
- 3) 大厅顶棚:顶棚的设计要求与类型;大厅顶棚构造。
- 4)顶部采光类型与构造(玻璃砖采光顶、平板玻璃屋顶、屋面采光口等)。
- 11、高级装修:
- 1)墙面装修的种类与构造:装饰抹灰墙面;石材及面砖铺贴墙面的选材及铺装构造;板材

及裱糊墙面材料与构造做法。

- 2) 地面装修构造:石材地面、实铺与空铺木地面及其他装修材料地面的选材与构造。
- 3) 吊顶装修构造: 常用吊顶的形式、材料与构造; 吊顶上灯具及设备安装、开洞构造。
- 12、变形缝及抗震措施:
- 1) 变形缝类型、设置部位及要求。各种变形缝构造。
- 2) 抗震设计的基本知识及抗震措施: 地震烈度及地震等级的有关规定; 砖石房屋抗震构造; 钢筋混凝土结构抗震构造(包括平面剪力墙布置等结构基本知识)。

(三) 试卷题型及比例

- 1、判断、填空、名词解释, 25%~35%;
- 2、根据文字条件作图、补图、改错图,25%~35%
- 3、根据指定部位进行构造设计,约35%。

建筑物理:

(一)、考试要求:

要求考生掌握建筑物理的基本知识、基本概念,基本理论,基本常识,基本计算,建筑材料的基本物理特性,满足物理环境要求的基本构造原理,并为在建筑设计中运用打下基础。

(二)、考试的内容及比例

- 1、建筑声环境(建筑声学)
- 1) 基本知识: 声的产生和传播; 声的基本名词(如频率、波长、声速、声频率、声强、声压、分贝标度、声强级、声压级、响度级、声功率级、A 声级、吸声系数、隔声量、混响、混响时间、扩散声场、时差效应等)。常用单位及换算。人耳的听觉特性: 音调; 音色; 响度; 时差效应; 听觉的频率特性与等响曲线等。
- 2) 吸声材料和吸声结构:掌握不同类型材料的吸声特点;吸声机理,以及选择及布置吸声材料和吸声结构的基本能力。
- 3) 音质设计:掌握厅堂体形及混响时间的设计、计算方法;室内声压级的计算方法,会对厅堂的音质进行分析。掌握创造良好音质条件的整个设计过程。
- 4) 建筑隔声与噪声控制:空气声及撞击声的计量、隔声评价及标准,材料、构件隔声特征,质量定律,吻合效应,共振频率,组合墙隔声,室内声压级降低值。掌握空气声、撞击声隔声设计、计算及影响隔声的因素,撞击声的隔绝措施。掌握吸声减噪的设计与计算方法,理解建筑、规划布局对隔声与噪声控制的影响,了解其它的噪声控制方法。
- 2、 建筑热环境(建筑热工)
- 1) 基础知识:导热、对流、辐射的概念,及其影响因素;掌握各种围护结构各部分的传热方式。建筑热环境的基本名词:导热系数,辐射换热系数,表面热转移系数;黑度;稳定传热,温度场;热阻,总热阻,最小总热阻,表面热转移换阻;传热系数,蓄热系数,表面蓄热系数,热惰性指标;热桥;风压,热压;绝对湿度,相对湿度,露点温度,水蒸汽分压力,饱和水蒸汽分压力,水蒸汽渗透系数,水蒸汽渗透阻;赤纬,太阳方位角,太阳高度角;室外综合计算温度等。常用单位及换算。
- 2) 建筑保温:稳定传热条件下平壁的热阻(匀质实体结构的传热阻;多层结构的传热阻; 非匀质实体结构的传热阻;封闭空气层的热阻;平壁内部温度计算;外围结构的保温设计。)
- 3) 水蒸汽渗透和冷凝:冷凝产生的条件及防止措施;围护结构表面及内部凝结的检验。
- 4) 建筑防热: 夏季室内过热的原因,房屋隔热,防热的原理和效果;夏季综合防热的措施。 自然通风的形成及作用: 自然通风的组织与建筑群及建筑物设计的关系。
- 5) 建筑日照:阳光的作用及控制途径;太阳的位置及其变化规律。日照计算数算法;棒影图的原理及应用。

- 3、 建筑光环境(建筑光学)
- 1) 基本知识:基本光度量及应用,以及参量之间的关系。建筑光环境的基本名词(如:光通量、发光强度,照度,亮度,采光系数,临界照度,定向反射,定向透射,扩散反射,扩散反射,扩散透射,定向扩散反射及透射,眩光,发光效率,色温,显色指数;配光曲线;相关色温;保护角等)及常用单位。视觉特性:影响视度因素;眩光及其消除措施。
- 2) 天然采光: 各种采光形式及采光特性; 天然采光的控制及调节。天然采光设计; 采光面积的计算。掌握等采光曲线图表的应用。从中找出采光口特征的规律。
- 3) 人工光环境:人工光源的特性:发光效率,寿命,色温,显色性,人工光源的类型及特性,应用效果及范围。对不同场合选择相适合的光源;照明灯具的光特性,分类,应用范围,设计中灯具的选用,灯具的布置。
- 4) 典型建筑的光环境设计要点:包括天然光及人工光,如:工业建筑、办公建筑、博展建筑、学校、商店、体育馆、室外景观照明等。
- 三、试卷题型及比例

题型:1 名词解释 2 填空题 (占 30%-40%)

3 选择题 4 判断与改错题 (占 30% -40%)

5 计算题 6 简述或论述题 (占 30%-40%)

试题涉及声,光,热部分的比例大致相等。试题涉及声,光,热部分的比例大致相等。 四、考试形式及时间:

考试形式均为笔试。考试时间为 1.5 小时。

五、参考书目:

建筑构造部分:

(1) 考试内容及要求

考试内容以《建筑构造》上、下册教材为主,辅以相关参考书目、标准图集、建筑资料集有 关建筑组成及构件的内容和相关建筑节能、绿色建筑等技术内容。

(2) 主要参考书目: 1、《中国建筑史》,中国建筑工业出版社; 2、《中国古代建筑史》,刘敦桢主编,中国建筑工业出版社; 3、《华夏意匠》,李允鉌著,中国建筑工业出版社; 4、《外国建筑史(十九世纪末以前)》,中国建筑工业出版社; 5、《外国近现代建筑史》,中国建筑工业出版社; 6、《城市规划原理》,同济大学主编,中国建筑工业出版社; 7、《外国城市建筑史》,沈玉麟编,中国建筑工业出版社; 8、《建筑构造》(上、下册),重庆建筑大学,李必瑜,刘建荣等,中国建筑工业出版社。9、《建筑构造》(第一册、第二册),南京工学院建筑系《建筑构造》编写小组,中国建筑工业出版社。10、《现行建筑设计规范大全》,中国建筑工业出版社编辑出版。11、《建筑设计资料集》(第二版),中国建筑工业出版社编辑出版。12、参考各地建筑设计标准图集。

建筑物理部分主要参考书目::

《建筑物理》(第三版)东南大学柳孝图编著中国建筑工业出版社出版,《建筑构造(上)》重庆大学主编:李必瑜中国建筑工业出版社出。

适用专业名称:城乡规划学 课程名称:城市规划原理

- 一、考试的总体要求
- 1、全面掌握城市规划原理的各种基本概念、基本理论、城市规划设计的原则和方法以及规划设计的有关技术经济等问题;

- 2、了解中国古代、近代城市建设发展的基本特征,了解国外城市建设发展的基本特征,了解国外经典城市发展思想、理论的基本内容;
- 3、了解当代城市规划理论和实践的发展变化,对当前热点城市规划理论、思想有一定的认识和理解:
- 4、具有良好的综合分析与思辨能力,以及通过文字或结合绘图的综合表达能力;
- 5、运用基本的城市规划原理知识,综合解决新问题,具备一定的触类旁通、关联理解能力。
- 二、 考试的内容、试卷题型及比例:
- (1) 考试内容及要求
- ①能准确地解释与城市规划相关的各种名词和基本概念;
- ②能正确、清楚、简明扼要地表述城市规划设计的原则和方法以及规划设计的有关技术经济问题:
- ③ 能有理论、有实例、有分析、有观点的通过笔述和绘图,正确表述关于城市规划学科的各种理论、观点、思潮以及城市规划建设方面的相关问题。
- (2) 试卷题型及比例
- 一般分为概念(名词解释)题、简答题和叙述题等几个部分。概念题约占 20%,简答题约占 30%,叙述题约占 50%。
- 三、 考试形式及时间

考试形式为笔试。考试时间为1.5小时。

四、参考书目:

1、《城市规划原理》,同济大学主编,中国建筑工业出版社; 2、《中国城市建筑史》,董鉴泓主编,中国建筑工业出版社; 3、《外国城市建筑史》,沈玉麟编,中国建筑工业出版社; 4、《城市规划》、《城市规划学刊(汇刊)》、《外国城市规划》等杂志。

适用专业名称:风景园林学(学术、专业均适用)

课程名称:风景园林快题设计

一、考试总体要求:

能运用景观规划设计的基本理论知识,独立完成各种类型的景观规划设计方案。

二、考试内容:

城市景观环境设计包括:广场、公园、庭院、建筑外环境等小尺度的景观环境设计。

三、考试题型:

方案快题设计

四、考试形式及时间:

考试形式均为笔试,考试时间为3小时

适用专业名称:城乡规划 课程名称:规划快题设计

- 一、考试的总体要求
- 1、在设计方案中灵活运用城市规划原理及相关知识;
- 2、能全面掌握各规划设计阶段的要求、深度、表现方法;
- 3、掌握国家相关技术经济指标的有关规定和技术经济指标的计算方法;
- 4、了解现行城市规划相关法规知识并能够在方案中综合运用。

二、考试内容、试卷题型及比例:

城市(镇)总体规划、详细规划和城市设计等各种类型,每年考其中的一种类型。

三、考试形式及时间

考试形式为笔试。考试时间:连续3小时。

适用专业名称:设计学(学术型)、艺术(专业型) 课程名称:艺术快题设计

一、考试的总体要求

本课程设计艺术学专业考生应根据试卷要求进行设计。

二、考试的内容及比例:

设计艺术学考试的内容为环境艺术设计(室内设计与景观设计)及相关装饰设计,包括公共建筑、居住建筑等室内空间设计,城市广场、公园、庭园、街道等环境空间景观设计,以及雕塑、壁画的小品等。

三、考试形式及时间

考试形式均为快速表现图形式。考试时间:连续3小时

适用专业名称:美术学课程名称:创作

- 一、考试的总体要求
 - 1、评图要求: 造型准确 50%; 构图合理 30%; 技法娴熟 20%
 - 2、所用绘画工具:钢笔、铅笔、毛笔均可。
- 二、考试内容及比例

以线描绘画为主:内容包括石膏像、人物、植物写生,创作。

三、考试形式及时间

考试形式均为绘画笔试。考试时间为3小时。

课程编号: 课程名称:细胞生物学

一、考试的总体要求

要求考生了解细胞生物学的基本概念、理论、研究手段与方法,具有较系统的细胞生物学理论基础与实践技能,了解细胞生物学发展的前沿和动态。

- 二、考试内容
- 1. 细胞、细胞膜和细胞器的化学组成、基本结构及其功能。
- 2. 细胞连接的类型,结构特征、分子机制和功能。
- 3. 原核和真核生物染色体结构的基本特征, DNA 复制的分子机制和基因组的复杂性。
- 4. 基因表达与调控
- 5. 蛋白质合成、分选与转运
- 6. 细胞骨架的类型、结构特点及功能
- 7. 细胞信号传导

- 8. 细胞周期及其调控
- 9. 细胞分化、衰老与死亡
- 10. 细胞生物学研究方法及其原理
- 11. 细胞生物学常用研究方法和实验技术
- 三、考试的题型及比例

试题包括概念题及问答题。概念题为名词解释,约占总分的 $30\sim40\%$; 问答题一般为 $6\sim7$ 题,约占总分的 $60\sim70\%$ 。

四.考试形式及时间 考试形式为笔试。考试时间为 1.5 小时。

课程编号: 课程名称: 高分子化学及物理

一、考试的总体要求

高分子化学:较系统地掌握高分子化学的基本知识,熟悉不同类型聚合反应的特征,了解聚合物合成及改性的主要机理和方法。考生应具有一定综合运用高分子化学知识分析和解释问题的能力。

高分子物理:考生要较系统地掌握高分子物理学的基本知识,高分子结构和分子运动的特点,以及它们和性能之间的关系。考生应具有综合运用这些知识分析和解释问题的能力。

二、考试的主要内容

高分子化学部分(25%)

- 1. 了解自由基聚合反应的机理及反应特征;自由基聚合微观动力学、聚合速率方程;自动加速现象及促使其产生和抑制的方法;温度对聚合速率、聚合度的影响。
- 2. 共聚物的类型和命名;二元共聚反应组成方程、共聚物组成曲线;竟聚率及其影响因素;共聚物组成与转化率的关系;取代基对单体活性和自由基活性的影响;Q-e概念。
- **3.** 了解本体聚合、溶液聚合、悬浮聚合、乳液聚合实施方法及特点;乳液聚合机理及聚合动力学。
- 4. 离子型聚合单体;阳离子型聚合及阴离子型聚合引发体系;离子型聚合的影响因素;活性聚合物和化学计量聚合及其应用;自由基聚合与离子型聚合的比较。
- 5. 配位聚合的定义和特点;配位引发剂的类型和作用;聚合物的立构规整度;Ziegler Natta 引发剂的组成、性质和反应,第三组份的作用。
- 6. 线型缩聚机理;影响线型缩聚物聚合度的因素和控制方法;重要线型逐步聚合物的原料和生产方法(如涤纶、聚酰胺、聚氨酯等)。体型缩聚与单体官能度;无规预聚物和结构预聚物;凝胶化作用和凝胶点的预测。
- 7. 聚合物的反应活性及其影响因素;聚合物的相似转变,聚合度变大的化学转变(交联、接枝、扩链);聚合物的降解(热降解、水解、氧化降解及光氧化降解);聚合物老化和防老化。
- 8. 高分子化学实验以实验课做过的实验为主,要求掌握实验实施方法、聚合机理、影响因素、反应式、数据处理、实验现象解释。

高分子物理部分 (75%)

1. 高分子链的结构和聚集态结构的特点及相互关系,它们对聚合物性能的影响。链的近程结构重点掌握链节的对称性和规整性、共聚物链节的序列分布对聚集态结构和聚合物性能的影响。链的远程结构重点掌握链柔性的充要条件,影响因素,表征和柔性对聚合物性能的影

响。链的聚集态结构重点掌握各种聚集态结构的特点,形成条件,影响因素,研究方法和聚 集态结构对材料性能的影响。

- 2. 高分子链的分子运动特点,它与微观结构和宏观性质间的关系。重点掌握玻璃化转变的物理本质,玻璃化转变温度和熔点的影响因素,测定方法;各种结构因素对力学状态的影响。
- 3. 橡胶的力学特点,高弹性的本质,橡胶状态方程式的推导、修正和应用以及合成橡胶结构的特点;高聚物粘弹性的典型力学现象和分子运动解释,基本模型描述,时温等效原理和WLF 方程式的应用。
- 4. 高分子稀溶液热力学性质的特点,Flory-Huggins 高分子溶液理论的要点,溶液化学位公式的应用。溶度参数,Flory-Huggins 作用参数,第二维利系数和特性粘数的物理意义、测定方法及应用,Flory 温度和Θ 体系的性质和特殊意义,利用高分子稀溶液性质测定分子及其分布量的方法。
- 5. 与聚合物结构表征与性能测试方法相关的高分子物理基本实验。了解实验原理,实验的关键步骤及相关的数据处理方法。

三、考试形式及时间 考试形式为笔试。

课程编号: 课程名称: 过程设备设计

一、考试的总体要求

《过程设备设计》课是过程装备与控制工程本科专业的核心课程,它包括压力容器设计和塔器、管壳式换热器、搅拌反应器等三种典型的非标化工设备设计,全国各院校过程装备与控制工程本科专业都将此列入主修专业课的核心教学内容。是构成过程装备工程技术的基础,随着各院校教学改革的不断深入,这门课也在不断增、删、组合,更改课程名称,但就课程的大纲要求及讲授内容基本变化不大。

化工过程机械专业研究生入学复试考试业务科目《过程设备设计》近几年主要内容为化工容器设计计算及相关力学基础,前述的三种典型化工设备的结构、强度、刚度及稳定性计算及相关的现行设计规范。考生除必须熟悉这些内容外,还应注意常规设计方法与现代容器设计中应力分类,低循环疲劳;常用化工设备材料及其最基本性能、化工容器与设备实验技术,常用零部件结构图等。从而以此考察学生过程设备专业的知识基础以及分析和解决工程问题的能力。

二、考试的内容及比例

化工容器力学基础(主要侧重旋转薄壳的无力距理论)约占试卷内容的 20%左右;边缘问题、厚壁圆筒、温差应力等问题以测试学生理解深度,约占 10%左右;容器密封、法兰、紧固件、容器开孔、补强、人手孔、容器支座等部件约占 10%左右;典型设备设计与计算约占 40%左右;从工作原理、加工、安装、运转、维修、经济(高效、低耗能)、安全、可靠等方面进行的典型设备零部件结构分析、论证约占 2 0 %左右。

覆盖全面的填空题一般占卷面分数的30%左右。

典型设备及零部件主要包括

- 1. 板式塔、填料塔整体结构,、塔盘基本型式,主要结构参数、填料基本型式与新型填料、气液均布装置、除沫器、裙座结构与强度,风载荷与地震载荷计算,塔的振动与防振。
- 2. 各类换热器结构特点,管壳式换热器整体结构,管壳式换热器零部件结构分析,管板受力分析,强度计算方法;膨胀节受力分析,强度刚度疲劳寿命计算,换热器管束诱发振动与防振。

3. 反应设备特点、反应设备总体结构,搅拌器类型及选择,釜体,轴封,传动装置结构分析。

实验考试内容含于上述各章之中。

三、考试的题型及比例

常出现的题型有(1)填空题,覆盖了整个考试内容的基本要求;(2)问答题或论证题,对某一典型设备的结构分析或强度刚度分析,安装、运转、维修等分析;(3)工程语言的识别与表达题,典型设备或零部件结构理解与识别及图形表示;(4)计算题,设计计算、强度刚度稳定性计算或变形、振动等分析计算

四、考试形式及时间

考试形式为笔试。

课程编号:

课程名称: 反应工程

一、 考试的总体要求

本门课程旨在考察学生掌握反应工程基本知识的程度,进行反应器设计的初步能力以及确定反应器操作方式和反应过程分析的水平。

考试的基本要求应满足应试学生达到天津大学本科生反应工程课程学习的优良水平。

- 二、 考试的内容及比例: (重点部分)
- 1、化学计量学(约 10%)

反应进度、转化率、收率和选择性, 化学计量关系, 独立反应数。

2、反应动力学基础(约15%)

均相反应动力学,气固相催化反应本征动力学及宏观动力学。

3、理想反应器(约30%)

间歇反应器,全混流反应器,活塞流反应器

4、停留时间分布(约10%)

停留时间分布的实验测定、定量描述及统计特征值,理想反应器的停留时间分布。

5、非理想流动模型和非理想反应器设计(约15%)

离析流模型, 多釜串联模型, 轴向分散模型, 反应器中流体的混合。

6、气固催化固定床反应器设计(约10%)

固定床内的传递现象,固定床反应器的数学模型及设计方法。

7、反应器的操作(约10%)

反应器的等温操作、绝热操作、换热操作,反应器的恒容与变容、间歇与连续操作,反应器的定态操作和定态稳定性。

三、 试卷题型及比例

简答题 20%

计算题 70%

论述题 10%

四、考试形式及时间

考试形式为笔试。

课程编号: 课程名称: 化工热力学及化工分离过程

化工热力学及化工分离过程是由《化工热力学》课程与《化工分离过程》课程两门课程组成, 复试试题包括 A、B 两个部分,A 部分为《化工热力学》部分,B 部分为《化工分离过程》 部分,考生可任选其中一门课程复试即可(即可以选择 A 部分,也可以选择 B 部分)。

- A、化工热力学部分
- 一、考试内容纲要
- 1. 流体的 PVT 关系 (~15%)
- 1.1 纯流体的 PVT 关系
- 1.2 真实流体状态方程的选择
- 1.3 对比态原理及其应用
- 1.4 气体混合物的 PVT 关系
- 2. 流体的热力学性质(~35%)
- 2.1 运用热力学基本方程和 Maxwell 关系式建立热力学容量性质与 pVT 的关系
- 2.2 变温、变压以及蒸发过程中热力学状态函数变化(如 Δ H、 Δ S)的计算
- 2.3 偏摩尔性质
- 2.4 化学位
- 2.5 剩余性质和超额性质
- 2.4 逸度和逸度系数计算
- 2.5 活度和活度系数计算(不要求记活度系数方程)
- 3. 相平衡 (~30%)
- 3.1 平衡与稳定性分析
- 3.2 热力学一致性校验
- 3.3 低压下的汽液相平衡: 相图和泡露点计算
- 3.4 高压汽液相平衡(相图、临界点及临界点附近的性质)
- 3.5 液液相平衡(相图分析)
- 3.6 气液相平衡(溶解度)
- 4. 化工过程的能量分析(~10%)
- 4.1 热力学定律
- 4.2 化工单元过程的理想功、损失功及热力学效率的分析和计算
- 5. 压缩和膨胀(~10%)
- 5.1 气体压缩
- 5.2 膨胀过程(节流膨胀和绝热做功膨胀)
- 二、考试形式

本考试大纲适用于硕士研究生入学复试,拟采用闭卷笔试的形式。题型包括:填空题、选择题,判断题,简答题,讨论题,计算题。

- B、化工分离过程
- 一、考试内容纲要
- 1.1 分离过程在工业生产中的地位和作用
- 1.2 传质分离过程的各种分类和特征
- 1.3 设计变量计算原则
- 1.4 传质分离过程的发展历史
- 1.5 传质分离过程的研究和开发现状与趋势

- 1.6 《化工分离过程》与其他相关课程的联系与区别
- 1.7 分离过程的选择方法和原则
- 1.8 分离顺序的确定原则和分离流程的优化
- 1.9 分离过程的耦合、集成与强化手段与途径
- 2.0 单级平衡分离过程的计算方法和原理
- 2.1 多级平衡分离过程的简捷法计算步骤
- 2.2 传质分离过程严格计算的主要方法及其适用范围
- 2.3 分离过程中的一些节能技术
- 2.4 提高分离过程效率(热力学效率和传质效率)的主要途径和方法
- 2.5 分离过程的典型应用实例
- 2.6 典型的分离设备与装置
- 二、试题类型及分值比例

基本概念题(包括选择题、填空题、判断题)、简答或论述题、计算题,其中以简答题为主。

三、考试形式

本考试大纲适用于硕士研究生入学复试,拟采用闭卷笔试的形式。

课程编号: 课程名称: 微生物学

一、考试的总体要求

要求掌握细菌、放线菌、蓝细菌、酵母菌、霉菌及噬菌体等主要微生物类群在形态、大小、细胞结构、繁殖方式及生活史等方面的一般特征。要求掌握四种营养类型微生物的产能代谢特点。掌握微生物的典型生长规律和影响生长的主要因素。掌握原核微生物的基因突变和基因重组的特点及应用,了解原核生物基因表达调控的基本概念和典型模式。掌握微生物学基本研究方法的原理和操作。

- 二、 考试的内容及比例:
- 1、 原核生物的主要类群(20%)

细菌、放线菌和蓝细菌的个体和群体形态特征、繁殖方式;原核细胞的一般结构特征,主要亚细胞结构的组成、结构和功能;

2、 真核微生物(10%)

酵母菌和霉菌的一般形态和大小、细胞结构特点、无性繁殖和有性繁殖方式及生活史;几种 典型酵母菌和霉菌的形态和繁殖方式的特征;

3、 微生物的营养(10%)

几种主要微生物营养类型的特点;营养物的主要运输方式;常见培养基的类型;

4、 微生物的代谢(20%)

四种营养类型微生物的产能代谢:几种产能代谢的基本机制和主要代谢途径;

5、 微生物的生长 (10%)

微生物的主要培养方式、常用生物量测定方法、生长曲线和主要生长参数的测定和计算、影响微生物生长的主要因素;

6、 病毒(10%)

常见大肠杆菌噬菌体的主要形态结构、增值方式;

7、 微生物遗传 (20%)

基因突变和诱变育种原理、细菌基因重组方式、原核牛物基因表达调控的经典实例:

- 三、 试卷题型及比例
- 1、 选择题、填空题、辨析题: 40%
- 2、 简答题: 60%
- 四、 考试形式及时间 考试形式均为笔试。

天津大学硕士生入学考试复试课程大纲说明

(对应用化学专业的精细化工方向适用)

课程编号: 课程名称:精细有机合成化学及工艺学

- 一、考试的总体要求
- 1、衡量考生对精细有机合成的基本概念、单元反应等基本知识的掌握程度。
- 2、衡量考生运用所学知识分析问题与解决问题的能力。
- 3、衡量考生运用所学单元反应的知识设计复杂化合物合成路线的能力。
- 二、考试的内容及比例

要求考生牢固地掌握芳香族亲电取代反应与亲核置换反应的反应机理、影响反应的因素;熟练掌握两类定位基在苯环、萘环和蒽醌环上的定位原理和定位规律。基本掌握加成反应的反应机理、加成位置的选择性。(10%)

理解溶剂的有关基本概念、溶剂效应及相转移催化反应。(10%)

重点掌握硝化、磺化和卤化反应的常用试剂、反应历程、动力学、反应机理及影响因素;熟练掌握有关的化学计算、工业上常用的反应方法。(10%)

掌握氧化反应和还原反应的特点、影响因素、适用范围及工业上的实际应用,理解反应的历程。(10%)

掌握卤基与羟基的氨解反应、水解反应、重氮化反应与重氮基转化反应的影响因素,熟悉有关的重要中间体的制备。(10%)

理解并熟练掌握烷基化反应和酰基化反应的反应试剂、反应机理与影响因素。(**10**%) 了解重要产品的合成方法与路线。(**40**%)

三、试券题型及比例

主要包括填空题、问答题、讨论题、计算题与合成题,合成题一般要求从苯、甲苯、二甲苯、 萘等基本原料出发,设计合成路线制备相应的产品。

- (1) 填空题、问答题、计算题、讨论题: 60~70%;
- (2) 合成题: 30~40%。

四、考试形式及时间

考试形式为笔试,考试时间按届时天津大学研究生院的具体要求定。

课程编号: 课程名称:理论电化学(适用应用化学专业电化学方向)

一、考试的总体要求

本课程是电化学专业的专业基础理论课。学生应掌握电化学的基本原理、基本概念、电化学测量原理和方法等基础知识,了解电化学理论的最新发展和研究方法。

二、考试的内容及比例(重点部分)

- 1、电解质溶液(15%)
- 2、原电池电动势与电极电位(5%)
- 3、双电层(20%)
- 4、不可逆的电极过程(5%)
- 5、电化学极化(10%)
- 6、浓度极化(10%)
- 7、气体电极过程(5%)
- 8、金属的阴极过程(10%)
- 9、金属的阳极过程(5%)
- 10、电化学测量原理和方法(15%)
- 三、试卷题型及比例

题型主要包括填空题、选择题、论述题和计算题,分别各占20%、20%、40%、20%。

四、考试形式及时间 考试形式为笔试。

课程编号: 课程名称: 工业催化

一. 总体要求

理解掌握工业催化的基本概念、原理及催化作用的基本规律,了解催化过程的化学本质,熟悉工业催化技术的的基本要求及特征,能灵活运用所掌握的催化原理分析、解决一些实际问题。

二. 考试内容

工业催化专业硕士研究生复试考试的主要内容包括:

- 1. 催化作用原理:掌握催化作用的基本原理和特征、工业催化剂的组成及工业催化剂的基本要求;掌握多相催化反应的基本步骤,理解吸附作用及其在多相催化反应中的作用。
- 2. 各类催化剂及其催化作用:要求掌握各类催化剂(酸碱催化剂,分子筛催化剂,金属催化剂,金属氧化物、硫化物和复合氧化物催化剂及络合催化剂等)的基本结构性质及其催化作用,了解典型化学工业过程所使用催化剂及其组成、作用。
- 3. 催化剂的制备与使用:掌握典型的催化剂制备方法(沉淀法、浸渍法、离子交换法)及原理,理解催化剂使用过程中要注意的问题。
- 4. 催化剂活性评价与表征:掌握工业催化剂评价与表征的一般性原则和常规方法,理解常规催化剂表征方法的基本原理。
- 三. 试题类型及比例

试题主要由两大部分构成:一部分为基本原理、概念题,侧重考察学生对工业催化基本原理及概念的掌握及理解情况,约占 80%;另一部分是应用题,侧重考察学生应用催化原理及概念分析和解决实际问题的能力,约占 20%。

四. 考试形式及时间

考试采用闭卷形式。

课程名称:制药分离工程

一、 考试的总体要求:

掌握制药分离工程单元操作的基本概念、基本原理和计算方法, 能够运用所学理论知识合理

选定单元操作和进行相关的设计计算;对制药分离过程中的某些现象进行分析,并根据具体情况对操作进行优化。具有扎实的专业基础知识、能灵活应用所学知识分析并解决实际问题的能力。

二、 考试的内容及比例: (重点部分)

(1) 制药分离过程(10%)

制药分离过程是制药生产的主要单元操作,掌握制药分离工程单元操作的地位、特征和一般规律,以及制药单元过程设计的内容、特点。主要包括制药分离过程的特点、设计的目的和要求以及根据分离任务选择单元过程的依据。

(2) 蒸馏与精馏(15%)

正确掌握精馏过程的设计计算方法,能够对给定分离要求的精馏过程进行计算分析,包括蒸馏和精馏的区别、气液平衡、理论板和回流比和精馏过程概念与计算。

(3) 萃取和浸取(10%)

掌握单级液液萃取和浸取过程的特征和设计计算方法(物料衡算),能够对萃取过程的萃取剂、萃取相和萃余相进行计算分析。包括三角形相图和杠杆定律、萃取的相平衡关系、单级萃取器的物料衡算、浸取相平衡和单级浸取。

(4) 结晶(15%)

掌握结晶过程的原理、相平衡关系以及晶核生程和生长的规律,能够进行结晶器物料衡算和结晶颗粒数的计算。包括结晶-溶解的相平衡曲线及其分区、晶核的生产和晶体的成长、结晶过程的控制手段、间歇结晶器。

(5) 吸附和离子交换(15%)

正确掌握吸附和离子交换装置的性能特征及设计方法,能够根据分离要求合理选用吸附剂或离子交换剂,并进行相关的计算分析。包括吸附等温线方程、吸附过程的影响因素、离子交换平衡方程和速度方程、典型吸附剂和离子交换剂。

(6) 色谱分离法(15%)

正确掌握色谱分离法的基本原理和有关计算方法,能够根据分离要求选择合适的色谱法种类 及进行设计。包括色谱法平衡关系及分配系数、阻滞因数和洗脱容积、色谱法的塔板理论、 色谱分离的主要影响因素和应用原则。

(7) 膜分离(15%)

掌握膜性能特征的表征参数,能够根据分离要求设计膜分离流程以及合理选用膜组件。包括膜性能的表征参数、浓差极化现象、膜过滤装置的设计方法。

(8) 非均一系的分离(5%)

掌握沉降和过滤两类方法的原理和设计计算,能够根据分离要求合理选定分离方式,并进行相关设计。包括重力沉降、离心沉降、过滤器的设计。

三、 试券题型及比例

考试试卷主要包括以下题型:选择填空、名词解释、简答题、计算题,各类题型的比例为:选择填空占30-40%、名词解释占10%、简答题占20-30%、计算题占10-20%。

四、 考试形式及时间 考试形式为笔试。

课程编号:

课程名称: 反应工程

一、考试的总体要求

本门课程旨在考察学生掌握反应工程基本知识的程度,进行反应器设计的初步能力以及确定 反应器操作方式和反应过程分析的水平。

考试的基本要求应满足应试学生达到天津大学本科生反应工程课程学习的优良水平。

- 二、 考试的内容及比例: (重点部分)
- 1、化学计量学(约 10%)

反应进度、转化率、收率和选择性,化学计量关系,独立反应数。

2、反应动力学基础(约15%)

均相反应动力学,气固相催化反应本征动力学及宏观动力学。

3、理想反应器(约30%)

间歇反应器,全混流反应器,活塞流反应器

4、停留时间分布(约10%)

停留时间分布的实验测定、定量描述及统计特征值,理想反应器的停留时间分布。

5、非理想流动模型和非理想反应器设计(约15%)

离析流模型, 多釜串联模型, 轴向分散模型, 反应器中流体的混合。

6、气固催化固定床反应器设计(约10%)

固定床内的传递现象,固定床反应器的数学模型及设计方法。

7、反应器的操作(约10%)

反应器的等温操作、绝热操作、换热操作,反应器的恒容与变容、间歇与连续操作,反应器的定态操作和定态稳定性。

三、 试卷题型及比例

简答题 20%

计算题 70%

论述题 10%

四、 考试形式及时间

考试形式为笔试。

课程编号: 课程名称: 化工传递过程与分离方法

一、 考试的总体要求

本考试科目包括化学工程专业本科课程:《化工传递过程基础》和《化工分离过程》。要求考生全面掌握、理解、灵活运用教学大纲规定的基本教学内容,具有熟练的运算能力、分析和解决问题的能力。

二、考试的内容及比例:

化工传递过程基础内容占60%,化工分离过程内容占40%。

- 1. 化工传递过程基础:
 - (1) 动量传递(25%)

传递过程概论;连续性方程与运动方程;运动方程的应用;边界层理论;湍流。

(2) 热量传递(15%)

传热概论与能量方程; 热传导; 对流传热。

(3) 质量传递(20%)

传质概论与传质微分方程;分子扩散;对流传质。

- 2. 化工分离过程:
- (1) 绪论(5%)

传质与分离过程的分类与特征。

(2) 单级平衡过程 (5%)

相平衡; 多组分物系的泡点与露点计算; 闪蒸过程的计算。

(3) 多组分多级分离过程(10%)

设计变量; 多组分精馏过程的分析与简捷计算。

(4) 其它分离方法(15%)

膜分离; 吸附与离子交换; 结晶。

- (5) 分离方法的选择(5%)
- 三、试卷题型及比例
- 1. 概念题 (约 25%): 填空题、选择题、判断题等:
- 2. 简答题(约25%): 名词术语解释题、讨论题等;
- 3. 计算题(约50%)。

四、考试形式及时间

考试形式为笔试。考试时间为1.5小时。

课程编号:

课程名称:食品科学综合

- 一、考试总体要求
- 1. 掌握食品科学的基本理论知识,理解食品加工的有关概念,食品加工方式对食品品质的 影响;掌握食品加工的基本原理、基本方法及过程;
- 2. 掌握食品营养学基础知识;掌握各种食品的营养价值;加工过程中营养素的变化分析;初步具有综合分析营养失调的表现症状、原因及防治措施等的能力。
- 3. 掌握新鲜果蔬的采后生理,掌握常用保鲜技术原理;初步掌握食品流通基本过程和管理 途径。
- 4. 掌握影响食品安全的主要因素、食品安全性的评价及检测方法;了解食品安全性的控制技术。
- 5. 熟悉主要食品原料特性,掌握主要食品加工种类和工艺路线。
- 二、考试的内容及比例

食品工艺学(约占 25%): 引起食品腐败变质的物理、化学、微生物因素及其作为产品达到安全消费的质量控制方法;食品的热处理和杀菌;食品罐藏的基本原理和工艺要点;食品干制和浓缩原理和技术要点;果蔬产品、粮油产品和畜产品典型加工产品种类特性和工艺流程。食品营养与分析学(约占 25%):营养学的基础知识,食物中糖类、脂类、蛋白质等的功能及其在食品加工、保藏中的营养问题;营养与疾病的关系;提高综合分析营养失调的表现症状、原因及防治措施等的能力;。

食品流通学(约占 25%):食品流通学基本概念;果实呼吸生理、乙烯生理、水分生理、成熟生理;机械制冷原理,气调保鲜原理和技术要点,生物保鲜技术;食品流通基本路径。食品安全(约占 25%):含天然有毒物质的食物,膳食结构中的不安全因素;化学物质污染与食物安全原料的生产与食品安全;转基因食品的安全性;食品安全性的评价标准;食品安全性的控制技术。

三、试卷题型及比例

试卷题型为简答题和论述题,比例分别为60%和40%。

四、考试形式及时间

口试和笔试,时间分别为20分钟和1.5小时。

课程编号:

第一部分 过程设备设计

一、考试的总体要求

《过程设备设计》课是过程装备与控制工程本科专业的核心课程,它包括压力容器设计和塔器、管壳式换热器、搅拌反应器等三种典型的非标化工设备设计,全国各院校过程装备与控制工程本科专业都将此列入主修专业课的核心教学内容。是构成过程装备工程技术的基础,随着各院校教学改革的不断深入,这门课也在不断增、删、组合,更改课程名称,但就课程的大纲要求及讲授内容基本变化不大。

化工过程机械专业研究生入学复试考试业务科目《过程设备设计》近几年主要内容为化工容器设计计算及相关力学基础,前述的三种典型化工设备的结构、强度、刚度及稳定性计算及相关的现行设计规范。考生除必须熟悉这些内容外,还应注意常规设计方法与现代容器设计中应力分类,低循环疲劳;常用化工设备材料及其最基本性能、化工容器与设备实验技术,常用零部件结构图等。从而以此考察学生过程设备专业的知识基础以及分析和解决工程问题的能力。

二、考试的内容及比例

化工容器力学基础(主要侧重旋转薄壳的无力距理论)约占试卷内容的 20%左右;边缘问题、厚壁圆筒、温差应力等问题以测试学生理解深度,约占 10%左右;容器密封、法兰、紧固件、容器开孔、补强、人手孔、容器支座等部件约占 10%左右;典型设备设计与计算约占 40%左右;从工作原理、加工、安装、运转、维修、经济(高效、低耗能)、安全、可靠等方面进行的典型设备零部件结构分析、论证约占 20%左右。

覆盖全面的填空题一般占卷面分数的30%左右。

典型设备及零部件主要包括

- 1. 板式塔、填料塔整体结构,、塔盘基本型式,主要结构参数、填料基本型式与新型填料、气液均布装置、除沫器、裙座结构与强度,风载荷与地震载荷计算,塔的振动与防振。
- 2. 各类换热器结构特点,管壳式换热器整体结构,管壳式换热器零部件结构分析,管板受力分析,强度计算方法;膨胀节受力分析,强度刚度疲劳寿命计算,换热器管束诱发振动与防振。
- 3. 反应设备特点、反应设备总体结构,搅拌器类型及选择,釜体,轴封,传动装置结构分析。

实验考试内容含于上述各章之中。

三、考试的题型及比例

常出现的题型有(1)填空题,覆盖了整个考试内容的基本要求;(2)问答题或论证题,对某一典型设备的结构分析或强度刚度分析,安装、运转、维修等分析;(3)工程语言的识别与表达题,典型设备或零部件结构理解与识别及图形表示;(4)计算题,设计计算、强度刚度稳定性计算或变形、振动等分析计算

四、考试形式及时间

考试形式为笔试。

第二部分 反应工程

一、 考试的总体要求

本门课程旨在考察学生掌握反应工程基本知识的程度,进行反应器设计的初步能力以及确定 反应器操作方式和反应过程分析的水平。

考试的基本要求应满足应试学生达到天津大学本科生反应工程课程学习的优良水平。

二、 考试的内容及比例: (重点部分)

1、化学计量学(约 10%)

反应进度、转化率、收率和选择性, 化学计量关系, 独立反应数。

2、反应动力学基础(约 15%)

均相反应动力学,气固相催化反应本征动力学及宏观动力学。

3、理想反应器(约30%)

间歇反应器,全混流反应器,活塞流反应器

4、停留时间分布(约10%)

停留时间分布的实验测定、定量描述及统计特征值,理想反应器的停留时间分布。

5、非理想流动模型和非理想反应器设计(约15%)

离析流模型, 多釜串联模型, 轴向分散模型, 反应器中流体的混合。

6、气固催化固定床反应器设计(约10%)

固定床内的传递现象,固定床反应器的数学模型及设计方法。

7、反应器的操作(约10%)

反应器的等温操作、绝热操作、换热操作,反应器的恒容与变容、间歇与连续操作,反应器的定态操作和定态稳定性。

三、 试券题型及比例

简答题 20%

计算题 70%

论述题 10%

四、 考试形式及时间

考试形式为笔试。

第三部分 化工热力学及化工分离过程

化工热力学及化工分离过程是由《化工热力学》课程与《化工分离过程》课程两门课程组成,复试试题包括 A、B 两个部分,A 部分为《化工热力学》部分,B 部分为《化工分离过程》部分,考生可任选其中一门课程复试即可(即可以选择 A 部分,也可以选择 B 部分)。

- A、化工热力学部分
- 一、考试内容纲要
- 1. 流体的 PVT 关系(~15%)
- 1.1 纯流体的 PVT 关系
- 1.2 真实流体状态方程的选择
- 1.3 对比态原理及其应用
- 1.4 气体混合物的 PVT 关系
- 2. 流体的热力学性质(~35%)
- 2.1 运用热力学基本方程和 Maxwell 关系式建立热力学容量性质与 pVT 的关系
- 2.2 变温、变压以及蒸发过程中热力学状态函数变化(如 Δ H、 Δ S)的计算
- 2.3 偏摩尔性质
- 2.4 化学位
- 2.5 剩余性质和超额性质
- 2.4 逸度和逸度系数计算
- 2.5 活度和活度系数计算(不要求记活度系数方程)
- 3. 相平衡 (~30%)
- 3.1 平衡与稳定性分析

- 3.2 热力学一致性校验
- 3.3 低压下的汽液相平衡: 相图和泡露点计算
- 3.4 高压汽液相平衡(相图、临界点及临界点附近的性质)
- 3.5 液液相平衡(相图分析)
- 3.6 气液相平衡 (溶解度)
- 4. 化工过程的能量分析(~10%)
- 4.1 热力学定律
- 4.2 化工单元过程的理想功、损失功及热力学效率的分析和计算
- 5. 压缩和膨胀(~10%)
- 5.1 气体压缩
- 5.2 膨胀过程(节流膨胀和绝热做功膨胀)
- 二、考试形式

本考试大纲适用于硕士研究生入学复试,拟采用闭卷笔试的形式。题型包括:填空题、选择题,判断题,简答题,讨论题,计算题。

- B、化工分离过程
- 一、考试内容纲要
- 1.1 分离过程在工业生产中的地位和作用
- 1.2 传质分离过程的各种分类和特征
- 1.3 设计变量计算原则
- 1.4 传质分离过程的发展历史
- 1.5 传质分离过程的研究和开发现状与趋势
- 1.6 《化工分离过程》与其他相关课程的联系与区别
- 1.7 分离过程的选择方法和原则
- 1.8 分离顺序的确定原则和分离流程的优化
- 1.9 分离过程的耦合、集成与强化手段与途径
- 2.0 单级平衡分离过程的计算方法和原理
- 2.1 多级平衡分离过程的简捷法计算步骤
- 2.2 传质分离过程严格计算的主要方法及其适用范围
- 2.3 分离过程中的一些节能技术
- 2.4 提高分离过程效率(热力学效率和传质效率)的主要途径和方法
- 2.5 分离过程的典型应用实例
- 2.6 典型的分离设备与装置
- 二、试题类型及分值比例

基本概念题(包括选择题、填空题、判断题)、简答或论述题、计算题,其中以简答题为主。 三、考试形式

本考试大纲适用于硕士研究生入学复试,拟采用闭卷笔试的形式。

第四部分 理论电化学(适用应用化学专业电化学方向)

一、考试的总体要求

本课程是电化学专业的专业基础理论课。学生应掌握电化学的基本原理、基本概念、电化学测量原理和方法等基础知识,了解电化学理论的最新发展和研究方法。

- 二、考试的内容及比例(重点部分)
- 1、电解质溶液(15%)

- 2、原电池电动势与电极电位(5%)
- 3、双电层(20%)
- 4、不可逆的电极过程(5%)
- 5、电化学极化(10%)
- 6、浓度极化(10%)
- 7、气体电极过程(5%)
- 8、金属的阴极过程(10%)
- 9、金属的阳极过程(5%)
- 10、电化学测量原理和方法(15%)
- 三、试卷题型及比例

题型主要包括填空题、选择题、论述题和计算题,分别各占 20%、20%、40%、20%。

四、考试形式及时间 考试形式为笔试。

第五部分 精细有机合成化学及工艺学

- 一、考试的总体要求
- 1、衡量考生对精细有机合成的基本概念、单元反应等基本知识的掌握程度。
- 2、衡量考生运用所学知识分析问题与解决问题的能力。
- 3、衡量考生运用所学单元反应的知识设计复杂化合物合成路线的能力。
- 二、考试的内容及比例

要求考生牢固地掌握芳香族亲电取代反应与亲核置换反应的反应机理、影响反应的因素;熟练掌握两类定位基在苯环、萘环和蒽醌环上的定位原理和定位规律。基本掌握加成反应的反应机理、加成位置的选择性。(10%)

理解溶剂的有关基本概念、溶剂效应及相转移催化反应。(10%)

重点掌握硝化、磺化和卤化反应的常用试剂、反应历程、动力学、反应机理及影响因素;熟练掌握有关的化学计算、工业上常用的反应方法。(10%)

掌握氧化反应和还原反应的特点、影响因素、适用范围及工业上的实际应用,理解反应的历程。(10%)

掌握卤基与羟基的氨解反应、水解反应、重氮化反应与重氮基转化反应的影响因素,熟悉有关的重要中间体的制备。(10%)

理解并熟练掌握烷基化反应和酰基化反应的反应试剂、反应机理与影响因素。(10%)

了解重要产品的合成方法与路线。(40%)

三、试卷题型及比例

主要包括填空题、问答题、讨论题、计算题与合成题,合成题一般要求从苯、甲苯、二甲苯、 萘等基本原料出发,设计合成路线制备相应的产品。

- (1) 填空题、问答题、计算题、讨论题: 60~70%:
- (2) 合成题: 30~40%。

四、考试形式及时间

考试形式为笔试,考试时间按届时天津大学研究生院的具体要求定。

第六部分 工业催化

一. 总体要求

理解掌握工业催化的基本概念及原理,能灵活运用所掌握的催化原理分析、解决一些实际问题。

二. 考试内容

工业催化专业硕士研究生复试考试的主要内容包括:

- 1. 催化作用原理:掌握催化作用的基本原理和特征、工业催化剂的组成及工业催化剂的基本要求,理解多相催化反应机制,认识吸附作用及其在多相催化反应中的作用。
- 2. 各类催化剂及其催化作用:要求掌握各类催化剂(酸碱催化剂,分子筛催化剂,金属催化剂,金属氧化物、硫化物和复合氧化物催化剂及络合催化剂等)及其催化作用,了解典型化学工业过程所使用催化剂及其组成、作用。
- 3. 催化剂的制备与使用:掌握典型的催化剂制备方法(浸渍法、沉淀法及离子交换法)及原理,理解催化剂使用过程中要注意的问题。
- 4. 催化剂活性评价与表征:理解影响催化剂活性测试的主要因素;理解常用催化剂表征方法(如 N2 低温吸附-脱附、XRD、TPD、TPR等)的原理及用途。
- 三. 试题类型及比例

试题主要由两大部分构成:一部分为基本原理、概念题,侧重考察学生对工业催化基本原理及概念的掌握及理解情况,约占 80%;另一部分是应用题,侧重考察学生应用催化原理及概念分析和解决实际问题的能力,约占 20%。

四. 考试形式及时间

考试采用闭卷形式。

适用专业代码: 080502、080503、080501

适用专业名称: 材料学、材料加工工程、材料物理与化学

课程编号:[此处键入课程编号] 课程名称:固态相变

一、考试的总体要求

掌握金属材料中的相变基本理论,主要是钢中组织转变的基本规律。具有运用金属材料中相 变基本规律,分析和研究热处理工艺问题的能力。初步掌握成分、组织与性能之间的关系, 对金属材料具有一定的分析研究能力。

二、考试内容及比例

第一章 绪论及金属固态相变特征

概述;金属固态的扩散和无扩散转变,弹性能对新旧相形成的影响;新相成核时的惯习面和位向关系、共格界面、半共格界面和非共格界面;界面能和晶界对新相形成的影响;过渡相的形成。

第二章 钢中奥氏体的形成

平衡组织加热时的奥氏体形成, P-A 转变的热力学条件、形成机理、等温形成动力学; 连续加热时的奥氏体形成,亚(过)共析钢的奥氏体形成及特点。

奥氏体晶粒长大及其控制, 奥氏体晶粒度的概念, 影响奥氏体长大的因素, 加热时钢的过热现象。

第三章 珠光体转变

珠光体的组织形态,片状、粒状珠光体的形成过程;珠光体转变动力学及其影响因素;亚(过)共析钢中的无共析相的形成、形态及动力学,伪共析组织;片状珠光体和粒状珠光体的机械性能及其影响因素,铁素体加珠光体组织的机械性能,钢中魏氏体组织对钢的机械性能的影响;钢中的相间沉淀。

第四章 马氏体转变

马氏体转变的定义,钢中马氏体的晶体结构,马氏体相变的基本特征;钢中马氏体的组织形态,板条马氏体和片状马氏体的形态、亚结构;马氏体转变的热力学条件;马氏体转变动力学,马氏体的性能;奥氏体的稳定化机理及其影响因素;马氏体的逆转变,热弹性马氏体和形状记忆效应。

第五章 贝氏体转变

贝氏体转变的基本特征; 贝氏体转变的热力学条件; 钢中贝氏体的组织形态和结构; 贝氏体转变过程, 钢中贝氏体的机械性能, 成分、形态的影响。

第六章 钢中过冷奥氏体的转变

过冷奥氏体等温转变图(TTT)的建立、特征和影响因素;过冷奥氏体连续冷却转变图(CCT)的建立、特征、各区的表示方法和影响因素。过冷奥氏体冷却转变时的临界冷却速度和影响因素;钢的临界冷却速度.

第七章 淬火钢回火时的转变

回火的意义和目的,淬火碳素钢回火时的转变(六个步骤);合金元素对回火转变的影响: 马氏体分解、残留奥氏体的转变、碳化物转变类型及回复和再结晶;回火钢的机械性能变化: 硬度、强度、韧性、塑性;第一、第二类回火脆性。

第八章 合金的时效

合金时效原理,合金沉淀热力学和动力学,沉淀机理。

- 三、试卷类型及比例
- 1. 基本概念和填空 20-30%
- 2. 简答 30-40%
- 3. 综合论述和分析题分析: 30-40%

四、考试形式及时间

考试形式为笔试。考试时间为90分钟。

适用专业代码: 080502、080503、080501、083100

适用专业名称: 材料学、材料加工工程、材料物理与化学、生物医学工程

课程编号: 课程名称: 高分子化学

一、考试的总体要求

要求考生系统掌握高分子化学的基本知识和基本概念、聚合反应机理、工业实施方法、常用聚合物的合成方法与机理、大分子化学反应,能够写出主要聚合物的结构式,熟悉其性能。考生应具备综合运用高分子专业基础知识分析问题、解决问题的能力。

二、考试内容及比例

1、绪论

基本概念:聚合物、单体、热塑性聚合物、热固性聚合物;聚合反应机理;聚合物的分类和命名。

2、逐步聚合反应

线型缩聚的反应机理;线型缩聚动力学;影响线型缩聚物聚合度的因素和控制方法;利用逐步聚合反应生产重要线型聚合物的原料和合成方法;体型缩聚与单体的官能度;无规预聚物和结构预聚物。

3、自由基聚合

自由基聚合热力学及其单体结构的影响;自由基聚合的单体;自由基聚合反应的机理及特征; 动力学链长和聚合度、温度对聚合度的影响;链转移反应。

4、自由基共聚合

共聚物的类型和命名;二元共聚物组成方程、组成曲线;竞聚率及其影响因素;单体和自由基的活性。

5、聚合方法

本体聚合、溶液聚合、悬浮聚合、乳液聚合实施方法及特点。

6、离子聚合

离子型聚合的单体及引发体系;离子型聚合的影响因素;活性阴离子聚合及其应用;自由基聚合与离子型聚合的比较。

7、配位聚合

配位聚合概念: Z-N 引发剂组成: 乙烯和丙烯的配位聚合: 二烯烃的配位聚合。

8、聚合物的化学反应

聚合物的反应活性、特征及其影响因素;聚合物的基团反应;接枝共聚、嵌段共聚、扩链、 交联;降解与老化。

9、高分子化学实验

比例: 1 部分约占 5-10%; 2 部分约占 25-30%; 3、4、5、6、7 部分约占 50%; 8 部分约占 5-10%; 9 部分约占 5-10%

三、试券类型及比例

名词解释、填空题、选择题和反应式比例约占 30%, 简答题约占 40%, 计算题、综合论述题 约占 30%。

四、考试形式及时间

考试形式为笔试,考试时间为90分钟(满分65分)。

课程编号: 50804 课程名称: 无机材料专业基础

一、复试要求:

要求复试考生比较牢固地掌握无机非金属材料专业的专业基础知识和实验技能,了解无机非金属材料的基本类型、主要性能、实验测试及表征方法。

二、复试内容:

第一部分 电子陶瓷

- 1. 介质瓷--铁电电介质陶瓷的性质和极化机理; 高频介质瓷的基本性能; 微波介质瓷的性能特点, 介质瓷的基本工艺。
- 2. 结构陶瓷--绝缘陶瓷材料的基本性质,Al2O3 陶瓷、滑石瓷、高导热陶瓷等结构陶瓷的组成、工艺与性能。
- 3. 半导体陶瓷--BaTiO3 陶瓷的半导化; PTC 陶瓷的主要性能; ZnO 压敏电阻。
- 4. 压电陶瓷--压电效应;压电陶瓷的基本性质;压电陶瓷的基本参数。

第二部分 工程结构陶瓷

- 1. 氧化锆晶体结构和增韧机理。
- 2. 氧化锆增韧陶瓷:分类、显微结构设计、力学性能。
- 3. 氧化锆增韧复相陶瓷: 氧化锆增韧氧化铝陶瓷, 氧化锆增韧莫来石陶瓷, 氧化锆/SiC等。
- 4. Si3N4 陶瓷: 主要制备方法、体系和性能。
- 5. SiC 陶瓷: SiC 晶体结构、SiC 粉体的制备方法、SiC 陶瓷的制备方法、特点和性能。 第三部分 专业实验
- 1. 无机非金属材料的力学性能: 陶瓷材料弯曲强度、断裂韧性、杨氏模量的测定及数据处理。

- 2. 无机非金属材料的热学性能:导热系数的测定(热线法)及数据处理。
- 3. 无机非金属材料的基本电学性能及实验:陶瓷材料电阻率、低频介电常数及介质损耗角正切值、高频介电常数及介质损耗角正切值、击穿强度、电容温度系数、压电陶瓷机电耦合系数的测试及数据处理。
- 4. 无机非金属材料物理化学实验: 差热分析及数据处理; 热重分析及数据处理; 高温显微镜实验方法及结果分析; 陶瓷材料的体积密度、吸水率、气孔率的测定及数据处理。

三、试卷内容及题型比例

- 1. 内容比例:以上三部分约各占三分之一。
- 2. 题型比例:以判断题、选择题、填空题和简单的计算题为主。

课程编号: 课程名称: 材料化学

- 1、无机材料的一般化学合成方法(固相反应、沉淀法、溶胶凝胶法、水热法、化学气相沉积等)的合成理论及特点。
- **2**、无机材料化学的特种合成理论及应用(等离子体合成、 微波合成、光化学合成、高温自 蔓延合成、仿生合成等)。
- 3、多元凝聚无机系统相图及其应用(二元及三元凝聚系统相图在无机材料设计、制备及性能预测中的应用)。
- 4、自由基聚合与自由基共聚合(聚合反应的单体和引发剂,聚合反应的聚合机理及聚合特征,自由基聚合的微观动力学,影响聚合反应的因素,聚合物动力学链长和聚合度的调整;阻聚剂和阻聚作用。)
- 5、离子聚合和配位聚合(离子聚合反应的单体和引发剂体系,聚合反应的机理及动力学,离子聚合反应的影响因素,阳离子聚合和阴离子聚合的应用。配位聚合反应的引发剂,配位聚合、定向聚合、立构规整度等概念,Ziegler-Natta 催化体系的组成。)
- 6、逐步聚合反应(逐步聚合反应的特点,以及反应程度、官能度、线型缩聚、体型缩聚等基本概念,线型缩聚反应的机理与动力学,线型缩聚中影响聚合度的因素及控制聚合度的方法,体型缩聚中的凝胶点的预测。)

参考书:无机材料化学,季惠明,天津大学出版社 硅酸盐物理化学,浙江大学等主编,中国建筑工业出版社 高分子化学,潘祖仁主编,化学工业出版社

适用专业代码: 080503

适用专业名称: 材料加工工程

课程编号: 课程名称: 焊接方法及工艺

一、考试的总体要求

要求考生在全面理解材料焊接加工各门课程的基本知识和主要内容的基础上,重点掌握焊接方法及工艺这门课程的实质性内容,要求考生具有概括、分析、推理和综合运用所学知识解决焊接工程问题的能力。

二、考试内容及比例

考试范围限于焊接方法及工艺课程的教学内容,按普通高等学校材料成型及控制工程专业 (焊接方向)现行的通用教材内容命题,以电弧焊内容为重点。

- 1、焊接电弧 电弧物理基础;焊接电弧产热及温度分布;电弧力及影响因素;交流电弧的特点;磁场对电弧的作用。
- 2、焊丝的加热、熔化及熔滴过渡 焊丝的加热与熔化特性;影响焊丝熔化的因素;熔滴过渡的主要形式及特点;熔滴上的作用力。
- 3、母材熔化和焊缝成形 焊缝和熔池的形状特点及尺寸;熔池的受力及力对熔池尺寸的影响;焊接参数和工艺因素对焊缝尺寸的影响,焊缝缺陷的形成原因及防止,焊缝成形的控制。
- 4、自动埋弧焊 埋弧焊的特点和应用;埋弧焊的冶金特点;埋弧焊的自动调节系统;对自动调节系统的基本要求;等速送丝调节系统;电弧电压反馈调节系统;埋弧自动焊机的电路及工作原理;埋弧焊工艺和常见缺陷及其防止措施;高效埋弧焊;埋弧堆焊。
- 5、钨极氩弧焊 钨极氩弧焊的特点及应用; 氩气的物理性质和保护特性; 焊枪与钨极; 电流 种类、参数及其选择; 钨极脉冲氩弧焊。
- 6、熔化极氩弧焊 熔化极氩弧焊的焊接特点和应用;射流过渡与亚射流过渡;熔化极脉冲氩弧焊;窄间隙焊;混合气体的选择及应用;送丝系统及其稳定性。
- 7、CO2 气体保护焊 CO2 气体保护焊的焊接特点和应用;冶金特点;CO2 气体、焊丝、焊接工艺参数及其选择;CO2 焊接短路过渡和细颗粒过渡;飞溅问题;CO2 焊接设备;药芯焊丝CO2 焊接。
- 8、等离子弧应用技术 等离子弧的产生和特性; 等离子弧焊接、切割、喷涂和喷焊。
- 9、电渣焊 基本原理、分类、特点及应用; 丝极电渣焊的工艺过程和工艺特点。
- 三、试卷类型及比例

题型以简答题为主(占60%~70%),辅以填空、选择和判断等题型(占30%~40%)。

四、考试形式及时间

考试形式为笔试。考试时间为90分钟。

参考书目:

- 1《连接工艺》李桓 高等教育出版社
- 2《熔焊方法及设备》王宗杰 机械工业出版社

课程名称: 金融与计量经济综合

一、考试的总体要求

本考试科目为应用经济学科的综合基础理论课程考试。考试内容涵盖货币银行学、计量经济 学等课程。主要考察考生对金融与计量经济学的基本概念、原理和基本定量分析方法的掌握 情况,应用金融、经济理论分析实际经济问题的能力。要求考生具备较好的综合分析能力、 计算能力和解决实际问题能力等。

二、考试的内容及比例

货币银行学部分(50%左右)

- 1. 货币、货币制度与利息理论
- 2. 金融市场、工具与机构
- 3. 金融机构经营与管理
- 4. 中央银行业务与功能
- 5. 货币政策与通货膨胀理论
- 计量经济学部分(50%左右)
- 1. 计量经济学的基本概念
- 2. 一元线性计量经济模型:

包括:相关分析、最小二乘估计及统计性质、模型显著性检验、预测等

3. 多元线性计量经济模型

包括:参数估计方法及其统计性质、参数的显著性检验、模型的显著性检验、非线性计量经济模型、虚拟变量问题、模型的应用等

4. 违背基本假定的计量经济学问题

包括: 违背基本假定的含义、异方差问题检验及其解决方法、自相关问题检验及其解决方法、多重共线性问题检验及其解决方法、随机解释变量问题及解决方法

5. 单方程模型的应用

包括:需求函数、投资函数、消费函数、生产函数模型及应用、结构分析、经济预测、政策评价等

- 三、试卷题型及比例
- 1. 概念题和简答题,要求解释概念或简要回答,约占50%
- 2. 论述分析题,要求进行较为详尽的论述,约占总分的20%
- 3. 计算分析题,约占30%
- 四、考试形式

考试形式为笔试。

五、主要参考教材

- 1. 张维,金融机构与金融市场,科学出版社,2008
- 2. 李忠民、张世英等,经济计量学教程,天津大学出版社,2009年
- 3. 张晓峒, 计量经济学基础, 南开大学出版社, 2007年
- 4. 米什金,货币金融学,中国人民大学出版社,2006,第七版
- 5. 黄达,货币银行学(修订本),四川人民出版社,1996

六、专业课无辅导

课程名称:货币银行学

一、考试的总体要求

本科目考试要求考生为各类经济院校和综合性大学各专业的学生,具备一定的货币银行和金融经济理论基础知识,并对中国实际情况有一定的了解,能够理论联系实际对问题进行全面和正确的分析和解释。

- 二、考试的内容及比例
- 1. 金融体系(15%)
- 2. 金融市场的利率(10%)
- 3. 外汇市场的汇率(10%)
- 4. 金融市场的风险管理(20%)
- 5. 金融机构经营与管理(20%)
- 6. 货币政策与通货膨胀理论(10%)
- 7. 国际金融与国际金融市场理论(15%)
- 三、试卷题型及比例
- 1. 名词解释,约占总分的 20%
- 2. 简答题,要求简单扼要回答,约占总分的40%
- 3. 论述分析题,要求进行较为详尽的论述,约占总分的40%
- 四、考试形式

考试形式为笔试。

五、主要参考教材

- 1. 米什金,货币金融学,中国人民大学出版社,2006,第七版
- 2. 黄达,货币银行学(修订本),四川人民出版社,1996

六、专业课无辅导

课程名称:系统工程概论

一、考试的总体要求

本课程要求考生能够掌握系统的基本概念、组成、基本特性,掌握系统工程方法论,系统分析的思考方式及其过程、内容和主要方法,并能够应用系统分析原理对现实问题进行分析,给出解决问题的基本思路。

- 二、考试的内容及比例
- 1. 系统工程概述(15%)
- (1) 能够举例说明:
- a.系统的功能及其要求
- b.系统的环境及输入、输出
- c.系统的结构
- d.系统的功能与结构、环境的关系
- (2) 系统的属性
- (3) 如何理解系统思想或系统观点
- (4) 系统工程的概念以及系统工程方法的特点
- 2. 系统工程理论与方法论(15%)
- (1) 系统工程的基本理论及其在管理中的应用
- (2) 霍尔三维结构及其特点
- (3) 霍尔三维结构与切克兰德的方法论的异同点
- (4) 近年来系统工程方法论的新发展及其特点
- 3. 系统分析(15%)
- (1) 系统分析的概念及其与系统工程的关系
- (2) 系统分析的要素及其含义
- (3) 系统分析的程序
- (4)如何进行系统目标分析、系统环境分析以及如何理解系统目标、系统自身和系统环境 之间的关系
- (5) 系统分析在管理中的应用
- 4. 系统建模与仿真(25%)
- (1) 系统模型的主要特征及其分类
- (2) 模型化的定义以及模型化的本质和作用
- (3) 结构分析的概念及意义
- (4) 系统结构的基本表达方式
- (5) 常用的系统结构模型化技术
- (6) 系统仿真的概念、特点及其在系统分析中的作用
- (7) 系统动力学的基本思想及其反馈回路的形成,并能举例说明
- (8) 系统动力学的建模原理,并能举例说明

- (9) 系统动力学在社会经济和管理中的应用
- 5. 系统评价方法(15%)
- (1) 系统评价在系统工程中的作用
- (2) 能够结合实例具体说明系统评价的六要素
- (3) 系统评价的目的以及系统评价的程序
- (4) 几种常用的评价方法(关联矩阵法、层次分析法、模糊综合评价法)的适用条件和功能,并能运用这些方法结合实例进行评价
- 6. 系统决策分析(15%)
- (1) 决策问题的模式和类型
- (2) 信息的价值及其在决策中的作用
- (3) 效用函数在决策分析中的作用及其识别过程
- (4) 运用风险型决策分析方法结合实例进行决策分析
- 三、试题题型及比例

简答题占 40%, 计算题 30%, 综合分析论述题 30%。(注:以上比例仅做参考)

四、考试形式

考试形式为笔试。

五、主要参考教材

- 1. 汪应洛主编,系统工程(第3版),北京:机械工业出版社,2003
- 2. 孙东川、林福永编著,系统工程引论,清华大学出版社,2004
- 3. 赵杰主编,管理系统工程,北京:科学出版社,2006

六、专业课无辅导

课程名称:管理学基础

一、考试的总体要求

理解管理学的基本概念和基本原理,熟悉管理理论的演变和发展,领会行为科学、组织文化与环境、管理沟通与信息技术等相关知识。深入理解和掌握管理的计划、组织、领导和控制等各项职能。对管理理论和实践的新发展有较好的把握和了解。

- 二、考试的内容及比例
- 1. 管理概述(20%)
- (1) 管理的基本概念、管理者与组织、管理与管理的职能
- (2) 管理理论的演变、各学派的主要观点及贡献
- (3) 组织文化与环境
- 2. 基础知识(30%)
- (1) 管理的基本原理
- (2) 行为科学理论
- (3) 管理沟通与信息技术
 - (4) 社会责任与管理
 - (5) 全球化与管理
- 3.管理职能(50%)
- (1) 计划: 计划的概念、计划的类型、计划的基础、战略管理、计划工作的工具和技术
- (2)组织:组织的概念、组织结构与设计、管理沟通与信息技术、人力资源管理、变革与创新管理

- (3) 领导: 领导的概念、领导理论、群体与团队、激励员工
- (4) 控制: 控制的概念、控制的类型、控制的过程、监控组织绩效
- 三、试卷题型及比例
- 1. 填空题(10%)
- 2. 判断是非题(10%)
- 3. 选择题(30%)
- 4. 简答题(40%)
- 5. 论述题(10%)

四、考试形式

考试形式为笔试。考试需带直尺、计算器等工具。

五、主要参考教材

- 1. 斯蒂芬·P.罗宾斯 (Stephen P.robbins),玛丽·库尔特 (Mary coulter),管理学(第 9 版),中国人民大学出版社,2008
- 2. 贾湖主编,管理概论(1-8章),天津大学出版社,2012、1 六、专业课无辅导

课程编号: 课程名称:实变函数(含度量空间)

一、 考试的总体要求

实分析是近代分析数学的基础,考试以实分析的基本知识为主,掌握可测函数与勒贝格积分的定义、性质及相关定理。

二、考试内容及比例

集合及其运算,映射,可数集,度量空间,开集、闭集、内部、闭包,稠密与可分。度量空间中的收敛序列,连续映射。完备的度量空间,Banach 压缩映射定理。紧度量空间。无处稠密集,纲定理。占 60%。

点集的 Lebesgue 测度,可测集的性质,可测函数,可测函数的几个重要定理。Lebesgue 积分的定义及性质,一般可积函数,积分的极限定理,Fubini 定理,有界变差函数,L^p 空间。占 40%。

三、试卷题型及比例

填空题与简答题占 40%, 证明题占 60%。

四、考试形式及时间

考试形式为笔试。(满分65分)。

课程编号: 课程名称: 最优化方法

一、考试的总体要求

要求学生掌握线性规划和非线性规划的基本理论,有关的概念及算法,并能进行应用。

- 二、考试的内容及比例(重点部分)
- 1. 凸集和凸函数的概念、性质及有关理论; 凸规划; 局部最优与整体最优。
- 2. 线性规划的基本概念与标准型;线性规划的基本定理;线性规划的最优性条件和基变换; 单纯形方法;线性规划的灵敏度分析。
- 3. 线性规划的对偶规划及有关理论:对偶单纯形法。

- 4. 一维搜索的黄金分割法、Fibonacci 法、平分法、抛物线法。
- 5. 无约束最优化问题的最优性条件,最速下降法,Newton 法与改进的Newton 法,共轭方向法,变尺度法,直接法。
- 6. 约束最优化问题的最优性条件;罚函数法;可行方向法;梯度投影法。 线性规划和非线性规划约各占 50%。
- 三、试卷题型及比例

选择题、填空题;占40%。计算题、解答题、证明题;占60%。

四、考试形式及时间

考试形式均为笔试。(满分65分)

课程编号: XXX 课程名称: 电磁学

一、 考试的总体要求

掌握电场场强和电势概念、电流密度的概念、电流的连续方程,了解基尔霍夫定律; 掌握毕奥一萨伐尔定律、安培环路定理、带电粒子和载流导线在磁场中受力以及磁力矩;掌 握感应电动势的计算方法,理解涡旋电场,会计算自感系数和互感系数;掌握有介质时的安 培环路定理的有关计算,理解磁路定理、磁场的能量和能量密度、磁化强度矢量及其与磁化 电流的关系、介质的磁化规律;理解麦克斯韦方程组。

二、 考试的内容及比例:

1.静电场 (20%)

静电场的基本现象和基本规律、 电场、 电场强度、 高斯定理、 电势极其梯度、带电体系 的静电能

2.静电场中的导体和电介质 (15%)

电场中的导体、 电容和电容器、 电介质、 极化强度、 退极化场、 电位移、 有介质时的 高斯定理、 电场的能量和能量密度

3.稳恒电流 (10%)

电流密度、 电流的连续性方程、 稳恒条件、 电源及其电动势、 *简单电路、 温差电现象

4.稳恒磁场 (15%)

磁的基本现象和基本规律、安培定律、 磁感应强度、 毕奥一萨伐尔定律、 安培环路定理、 安培力、 载流线圈的磁矩、 磁力矩、 磁力的功、 洛仑兹力、 带电粒子在磁场中的运动

5.电磁感应和暂态过程(15%)

电磁感应定律、感应电动势、 动生电动势和感生电动势、 涡旋电场、 电子感应加速器、 自感、 互感、 自感磁能和互感磁能、 暂态过程

6. 磁介质 (15%)

分子电流观点、磁介质的磁化、磁化强度矢量极其与磁化电流的关系、磁场强度矢量、介质的磁化规律、 顺磁质、 抗磁质、 铁磁质、 边界条件、 磁路定理、 磁场的能量和能量密度

7.麦克斯韦电磁理论和电磁波 (10%)

位移电流、 麦克斯韦方程组、 电磁波

三、 试卷题型及比例

选择、填空题共占40%。

简答题、计算题占60%。

四、 考试形式及时间

考试形式均为笔试。考试时间为90分钟。

五、 参考书目

赵凯华、陈熙谋,《新概念物理教程一电磁学》 第2版,高等教育出版社,2006。

适用专业代码: 071011 适用专业名称: 生物物理学

课程编号: XXX 课程名称: 生物信息学

一、考试的总体要求

熟悉、掌握生物信息学的基本概念、基本原理、基本研究方法、主要研究内容以及常用的核酸和蛋白质数据库等;掌握基于互联网的常用生物信息学软件的基本操作使用方法;充分了解生物信息学的主要发展趋势和前沿领域。

- 二、 考试的内容及比例: (重点部分)
- 1.生物信息学概论、常用核酸与蛋白质数据库 (10%)

生物信息学的定义、基本概念及其发展现状;生物信息学研究的基本内容、基本原理与生物学基础。常用核酸、蛋白质序列数据库;数据库检索;应用举例。

2.序列对比与相似搜索原理、序列特征分析 (20%)

序列同源搜索的生物学原理及概念;常用软件,例如 BLAST 等算法原理; BLAST 衍生系列软件的使用及应用举例。DNA、蛋白质序列特征的分析;相关常用软件及其基本原理;应用举例。

3. 基因注释与功能分析(20%)

基因注释与功能分析的目标与内容;基于同源信息的基因结构注释方法;基于统计建模的基因结构预测方法;基因组结构注释相关工具与资源; Gene Ontology 的相关平台及常用工具; KEGG 的相关平台及常用工具。

4. 蛋白质特征分析与功能预测(20%)

蛋白质序列与结构简介;蛋白质序列特征分析方法、相关工具与资源;蛋白质结构数据的获取、显示与分析;蛋白质结构预测的相关工具与资源;基于结构的蛋白质功能预测。

5. 分子进化分析与构建系统发生树 (20%)

核苷酸和蛋白质分子进化及系统发生树的基本概念与方法;进化模型与进化距离计算的基本原理;构建系统发生树的相关软件与资源的使用。

6. 生物信息学前沿技术 (10%)

了解生物信息学领域中的前沿方向与计划,如 ENCODE等;了解系统生物学与合成生物学等领域的发展;了解各类组学研究中的常用方法。

三、 试券题型及比例

客观题:单选、判断,共占40%。

主观题: 名词解释、简答, 共占 60%。

四、 考试形式及时间

考试形式均为笔试。考试时间为90分钟。

五、 参考书目

- [1] Attwood 等著,罗静初等译,生物信息学概论,北京大学出版社,2002年。
- [2] 李霞等著,生物信息学,人民卫生出版社,2010年。

课程编号: 51006 课程名称: 固体物理学

一、考试的总体要求

考察考生掌握《固体物理学》的基本知识、基本要念和基本理论,熟悉固体物理学的主要研究方法,具有较强的计算能力。着重考察考生对本课程主要内容的掌握情况和解题能力。

二、 考试的内容及比例: (重点部分)

以固体物理学的基本内容为主,几个专题内容为辅。

1. 晶体结构及其测定: 15%

典型晶格实例,倒格子晶格散射和电导,晶体的宏观对称性,晶体结构测方法,原子散射, 几何结构因子和消光现象。

2. 固体的结合类型: 15%

原子的化学键分类,固体结合分类和特点,马德隆常数,晶体结合的规律性。

3. 晶格振动与晶体的热学性质: 30%

简正坐标,一维单(双)原子振动,色散关系,离子晶体振动,晶体热容的量子理论,模密度,晶格状态方程等。

4. 固体的能带理论: 30%

布洛赫定理, 近自由电子近似和紧束缚法, 能态密度和费米面。

5. 金属电子论: 10%

电子热容量和费米统计,功函数和接触电势。

- 三、 试卷题型及比例
- 1. 基本内容题,~40%。由 8~10 小题构成,覆盖课程的整个范围,有小证明题、计算题、作图题等形式。主要考察考生的知识结构和对基本知识的掌握情况,考试内容广而不深。
- 2. 计算题和证明题, 60 %。由 4 \sim 6 个大型技术和证明题组成。考察考生对基本理论和主要研究方法的掌握程度和运用它们解决问题的能力。
- 四、 考试形式及时间

考试形式均为笔试。(满分65分)。

课程编号: 51008 课程名称: 光学

一、 考试的总体要求

掌握光学的基本概念和基本定律,能够运用数学解决波动光学的基本问题。

- 二、 考试的内容及比例: (重点部分)
- 1. 光的干涉:干涉原理;球面波、平面波复振幅表示及在观察面上的场分布;杨氏干涉和迈克尔逊干涉仪为代表的两类双光束干涉;多干涉束干涉特性 . (约占 15 分)
- 2. 光的衍射: 用半波带法分析圆孔和圆屏的费涅耳衍射; 用基耳霍夫积分公式定量地分析单缝和矩孔的夫琅霍夫衍射的强度分布; 掌握光栅的基本公式,了解线色散、角色散和分辨本领的概念及有关公式的推导,(约占 15 分);
- 3. 傅利叶变换光学和全息: 了解透镜前后焦面上光波复振幅的傅利叶变换关系; 了解空间滤波的基本概念; 掌握全息术的基本原理及在干涉计量中的应用。(约占 10 分)
- 4. 光的偏振和晶体光学基础:掌握五种偏振态基本概念及其分辨方法;会用费涅耳公式计算反射率和透射率;了解单轴晶体的双折射现象的基本规律;了解偏振片和波片的基本概念;掌握平行偏振光的干涉的基本公式及其应用(约占 15 分);

- 5. 光的吸收、色散和散射: 了解光的色散和散射的基本概念。(约占5分)
- 6. 光的量子性:了解光的量子性的基本概念;掌握光子的能量和动量的基本公式。(约占5分)。
- 三、 试卷题型及比例

概念题(包括简单计算)40%(每题5分)

计算题(包括证明题)60%(每题10分)

四、 考试形式及时间

考试形式均为笔试。 (65 分)。

课程名称:无机化学(含无机化学实验)

一、考试的总体要求

考察学生对无机化学基础理论和元素化学基本知识及无机化学实验基本操作技能的掌握情况。

二、考试的内容及比例(重点部分)

硕士研究生入学无机化学考试范围以《高等工业学校无机化学课程教学基本要求》为依据,结合我校实际教学情况,考试内容及各部分比例如下。

- (一) 无机化学原理部分(35~45%)
- 1. 化学反应中的能量关系 2. 化学反应的方向、速率和限度 3. 溶液中的离子平衡 4. 氧化还原反应 5. 配位化合物
- (二) 物质结构部分(15~20%)
- 1. 原子结构 2. 分子结构 3. 晶体结构
- (三) 元素化学部分(30~35%)
- **1**. 主族元素: 各元素的通性,及常见元素和重要化合物的性质及性质递变规律,常见离子的鉴定。
- 2. 过渡元素: 过渡元素的通性,及钛、钒、铬、锰、铁、钴、镍、铜、银、锌、汞等重要化合物的性质,常见离子的鉴定。
- 3. 镧系和锕系元素; 镧系和锕系元素的通性及其重要化合物的性质.
- (四) 实验部分(10~15%)
- 1. 基本操作和技能:无机化学实验中的基本操作和技能.
- 2. 测定实验:了解一些常数(如气体常数)和化学数据(如解离常数)的测定方法,初步掌握正确操作、记录和处理实验数据的能力。
- 3. 元素及其化合物的性质实验:通过元素及化合物的性质实验、个别离子和混合离子(三种)的检出实验,掌握常见元素及其化合物酸碱性、溶解性、氧化还原性、水解及配位性等性质,培养正确观察、分析和归纳的能力.
- 4. 无机化合物的制备及综合、设计性实验;通过无机制备实验,学习无机物的制备、 分离和提纯技术和方法,培养学生独立设计实验方案、选择仪器和药品进行实验的初步能力。

三、试卷题型及比例

是非题(\sim 10 %), 选择题(\sim 25 %), 填空题(\sim 10 %), 完成反应式(\sim 20 %), 计算题(\sim 20 %), 填表题、或综合填充(\sim 15 %)。

四、考试形式及时间

考试形式为闭卷笔试. (可以使用数学计算器)。

复试科目

1. 民商法专业

(1)考试的总体要求

本门专业课主要考察学生对相关法学专业课的基本概念和基本原理了解和认识的广度和深度,以及运用所学知识分析、解决相关法律问题的能力和水平。

(2)考试的内容及比例

商法学

(3)考试的内容及比例

名词解释: 约占 10%--20% 简答题: 约占 40%--50% 论述题或案例分析: 约占 30%--40%

(4)考试形式及时间

复试形式为笔试加综合面试,笔试时间为90分钟。

2. 经济法学专业

(1)考试的总体要求

本门专业课主要考察学生对相关法学专业课的基本概念和基本原理了解和认识的广度和深度,以及运用所学知识分析、解决相关法律问题的能力和水平。

(2)考试的内容及比例

经济法学

(3)考试的内容及比例

名词解释:约占 10%--20%简答题:约占 40%--50%论述题或案例分析:约占 30%--40%

(4) 考试形式及时间

复试形式为笔试加综合面试,笔试时间为90分钟。

3. 国际法学专业

(1)考试的总体要求

本门专业课主要考察学生对相关法学专业课的基本概念和基本原理了解和认识的广度和深度,以及运用所学知识分析、解决相关法律问题的能力和水平。

(2)考试的内容及比例

国际法学(包括国际公法占20%、国际私法占20%、国际经济法占60%)

(3)考试的内容及比例

名词解释: 约占 10%--20% 简答题: 约占 40%--50% 论述题或案例分析: 约占 30%--40%

(4) 考试形式及时间

复试形式为笔试加综合面试,笔试时间为90分钟。

4. 知识产权法学专业

(1)考试的总体要求

本门专业课主要考察学生对相关法学专业课的基本概念和基本原理了解和认识的广度和深度,以及运用所学知识分析、解决相关法律问题的能力和水平。

(2)考试的内容及比例

知识产权法学(包括专利法 50%、著作权法 30%、商标法 20%。)

(3)考试的内容及比例

名词解释: 约占 10%--20% 简答题: 约占 40%--50% 论述题或案例分析: 约占 30%--40%

(4) 考试形式及时间

复试形式为笔试加综合面试,笔试时间为90分钟。

课程编号: 51105 课程名称: 语言文字学

一、考试的总体要求

在初试的基础上,进一步检查考生:(1)对国家语言文字政策的了解情况;(2)掌握古今汉语及语言学基础理论和基本知识的广度和深度;(3)分析语言现象的能力。

二、考试内容及比例

笔试占30%,口试占70%。

三、试券题型

笔试题型包括填空、选择、简答和论述等。

四、考试形式及时间

复试形式包括笔试和口试两种形式,笔试时间共90分钟。

适用专业代码: 050211 适用专业名称: 外国语言学及应用语言学

课程编号: 51109 课程名称:口语、写作

一、 考试的总体要求

复试包括口试和笔试两部分。

二、 考试内容及比例

笔试占30%,口试占70%。

- 三、考试内容及时间
 - 口试内容包含以下几点:
- 1、 本科学习情况(含本科学习成绩、获奖情况)
- 2、 基础知识、专业知识的掌握情况,对报考专业的了解程度
- 3、 综合知识应用能力
- 4、 外语能力
- 5、 语言表达能力、思维的敏锐性及逻辑思维能力 笔试主要是命题作文,根据所给题目及要求用英语撰写两篇文章。做到内容充实、语言

通顺、用词恰当、表达得体。

考试时间(包括口试和笔试): 笔试时间90分钟。

全日制翻译硕士专业学位(MTI)复试大纲

课程编号:

课程名称:《英语翻译综合技能》

一、考试的总体要求

在初试的基础上,进一步考查考生的专业综合知识水平和学习与应用能力,以及中英文互译的技能与水平。

二、考试形式及比例

口试成绩占 70%, 笔试成绩占 30%。

- 三、考试内容及时间
- (一)口试内容包含以下几点:
- 1、 本科学习情况
- 2、 基础知识、专业知识的掌握情况,对报考专业的了解程度
- 3、 综合知识应用能力
- 4、 外语能力
- 5、 语言表达能力、思维的敏锐性及逻辑思维能力
- (二) 笔试内容为中英文语篇翻译
- 四、考试时间(包括口试和笔试)

笔试时间90分钟。

适用专业代码: 050106 适用专业名称:中国现当代文学

课程编号: 846 课程名称: 中国现当代文学

一、考试的总体要求

在初试的基础上,进一步检查考生: (1) 对现当代文学领域前沿热点问题的把握与思考 (2) 文学感悟力与文字驾驭能力 (3) 对导师冯骥才先生的文学艺术及文化思想的认识与理解水平。

- 二、考试内容及比例 笔试占 30%,口试占 70%。
- 三、试卷类型

笔试试题类型包括简答、论述、写作等。

四、考试形式及时间

复试形式包括笔试和口试两种形式,笔试时间90分钟。

课程名称:教育学基本理论

一、考试的总体要求

考生应系统掌握教育学科的基础知识、基本理论和基本方法,能运用教育理论和方法分析和 解决教育的实际问题。

二、考试的内容及比例

教育学的产生及教育学理论的发展 10%; 教育的本质 10%; 当代主要教育思潮 15%; 课程与教学论 20%; 教育与社会、经济、文化的互动 20%; 教育与职业 5%; 教育与科技 5%; 高等教育的理论与实践 15%

三、试券题型及比例

试卷题型包括三种:名词解释、简答和分析论述,其比例分别为:20%、30%和50%。

四、考试形式

考试形式:闭卷、笔试。

五、主要参考教材

全国十二所重点师范大学编:《教育学基础》,教育科学出版社出版。

黄志成主编:《西方教育思想的轨迹--国际教育思潮纵览》,华东师范大学出版社。 单中惠主编:《西方教育思想史》,教育科学出版社。

课程名称: 普通心理学

一、考试的总体要求

普通心理学是心理学的一门基础学科。它研究心理现象产生发展的最一般规律,心理学的历史、发展趋势、理论体系、派别和研究方法等。普通心理学的内容既要概括各个分支学科的研究成果,从中总结出心理学的最一般规律,又要为各个分支学科提供理论基础。普通心理学是心理学的入门学科。

普通心理学的教学目的,是要使学生掌握心理现象的本质、机制、规律和事实,对心理学的历史、现状及发展趋势等有所了解,初步形成多种视角的心理学观点,并具备一定的综合运用心理学知识解决实际问题的能力。

二、考试的内容及比例

第一部分 心理学的研究对象(5%)

心理学的研究对象;心理学的任务;心理学的方法和原则;心理学发展的现状;科学心理学的产生和发展。心理学、观察法、个案法、实验法、心理测验法;客观性原则,发展性原则、系统性原则、教育性原则。中国古代心理学思想的发展;西方心理学的主要流派。

第二部分 心理的生理机制(5%)

反射;条件反射;无条件反射;反射弧;兴奋;抑制;第一信号系统;第二信号系统;经典性条件反射;操作性条件反射。神经系统的功能;条件反射的建立;巴甫洛夫经典性条件反射与斯金纳的操作性条件反射的异同;脑学说的发展;大脑活动的特点和规律;脑的进化有那些一般的趋势。

第三部分 感 觉(10%)

感觉的神经信息加工和感觉的种类;感受性和感觉阈限关系及相关概念;视觉产生的机制;视觉现象;听觉的生理机制;其他感觉的内容;感觉的规律。感觉;感受性;感觉阈限;绝对感受性;绝对感觉阈限;差别感受性;差别感觉阈限;韦伯定律;明度;颜色;颜色混合;色觉缺陷;视敏度;明适应;暗适应;正负后像;闪光融合;视觉掩蔽;动觉;平衡觉;内脏感觉。

适应的特点及机制及其在生活中的重要意义;分析同一感觉之间的相互作用;分析不同感觉

之间的相互作用;分析感觉之间的补偿作用。

第四部分 知 觉(10%)

知觉;数据驱动加工与概念驱动加工;特征捆绑;知觉相对性;知觉的整体性;知觉的理解性;知觉的恒常性;空间知觉;轮廓;视知觉的线索;时间知觉;运动知觉;错觉。知觉的信息加工理论、知觉产生的生理机制及知觉分类;知觉的特性;空间知觉的特性和不同空间知觉的种类;时间知觉的估计以及影响时间知觉的各种因素;运动知觉的不同表现;错觉的种类和理论。

第五部分 记 忆(10%)

记忆、情景记忆、语义记忆、外显记忆、内隐记忆、感觉记忆、短时记忆、长时记忆、程序性记忆、陈述性记忆、图像记忆、再认、回忆、遗忘、前摄抑制、倒摄抑制、记忆的准备性、前瞻性记忆。记忆和理解记忆的作用;记忆的分类;感觉记忆的编码和保持;短时记忆的编码以及影响的因素;短时记忆信息的存储和遗忘、提取;长时记忆的编码、存储、遗忘、提取;艾宾浩斯的遗忘曲线和规律以及遗忘的原因;内隐记忆和外显记忆的关系,记忆的品质。第六部分 思维和想象(10%)

思维的概念及特征;思维的过程和种类;表象的特征和作用;想象的功能和种类;概念的种类和结构理论,概念形成的实验研究;三段论推理、线性推理和条件推理;记忆和理解:问题解决中的策略,影响问题解决的心理因素;创造性的心理成分及影响问题解决的心理因素;创造性的心理成分及影响问题解决的心理因素;创造性的心理成分及影响创造性的因素。思维、间接性、概括性、分析、综合、比较、抽象、辐合思维、发散思维、表象、想象、再造想象、创造想象、幻想、概念、推理、问题解决、定势、创造性。

第七部分 注 意(10%)

注意的外部表现;注意的种类和注意的品质;注意的主要理论;注意的认知理论。记忆意识、 失眠、注意、不随意注意、随意注意、随意后注意、选择性注意、持续性注意、分配性注意; 注意的理论模型。

第八部分 情绪和情感(5%)

情绪和情感的性质和功能;情绪与情感的区别和联系;情绪的维度与两极性;情绪和情感的分类;情绪的脑机制;情绪的外部表现;各种情绪理论。

第九部分 意志与动机(5%)

意志、双趋冲突、双避冲突、趋避冲突、挫折、退化,独立性、果断性、坚定性、自制力。意志行动的特征;意志行动的冲突;意志行动的阶段;挫折及其应对;意志的品质。

需要,动机,兴趣、理想、信念、世界观等概念,需要的层次与结构;动机的复杂性;兴趣的分类;动机的特点;需要与动机的关系和兴趣的作用。动机的种类;动机的功能;动机与需要的关系;需要的理论;动机与行为效率关系;动机理论。

第十部分 个性和个性倾向性(10%)

个性和个性倾向性的有关概念;个性的特点;研究个性的意义;需要的层次与结构;动机的复杂性以及兴趣的分类;个性的形成和发展。个性,个性倾向性,个性心理特征的相关概念与理论。

第十一部分 能 力(10%)

能力与知识、技能的关系;能力、天才和才能的差异;能力的种类和结构;智力理论;能力发展的个体差异;能力形成的原因和条件。智力测量与智商。

第十二部分 人 格(10%)

人格的结构,人格的特质理论和类型理论;认知风格;人格测验。气质的特征、气质理论;性格的结构特征、性格与气质、能力的关系;影响人格的形成与发展的因素。

三、试卷题型及比例

第一部分 名词解释(10%)

第二部分 选择题(20%)

第三部分 简答题(40%)

第一部分 论述题(30%)

四、考试形式

考试形式为笔试。

五、主要参考教材

《普通心理学》,彭聃龄主编,北京师范大学出版社,2007年出版《基础心理学》,沈德立主编,华东师范大学出版社,2003年出版

课程名称:教育管理概论

一、考试的总体要求

要求考生掌握教育管理的基本概念、基本原理和方法,并具有运用这些原理和方法分析和解决教育管理实际问题的能力。

- 二、考试的内容及比例
- (一)教育行政管理(约占40%)
- 1. 教育计划
- 2. 教育行政体制
- 3. 教育行政组织及行政管理人员
- (二)学校管理(约占60%)
- 1. 学校目标管理
- 2. 学校质量管理
- 3. 学校人事管理
- 4. 学校领导
- 三、试卷题型及比例
- 1. 概念解释(约 20%)
- 2. 简答题(约35%)
- 3. 论述题(约45%)

四、考试形式

考试形式为笔试。

五、主要参考教材

陈孝彬主编,教育管理学,北京师范大学出版社,2008年5月第三版

课程名称: 药物化学 (入学复试大纲)

一、考试的总体要求

要求考生了解各类药物的分类并较系统地掌握药物化学的基本知识、基本概念、药物作用的基本原理与构效关系 、药物代谢的重要途径、新药研究的方法与进展,能够写出药物的种类、名称、化学结构、化学合成及其基本用途。初步具备综合运用药物化学知识进行药物的开发研制能力。

二、考试的内容及比例

了解药物及药物化学的发展历史,掌握药物化学的基本知识、基本概念及命名原则。

- 1. 掌握各类药物的分类、化学结构及理化性质,正确写出药物的名称、中英文化学名称和结构式。约占 10%。
- 2. 了解中枢神经系统药物的分类,掌握药物的结构特征、基本药效关系、药物代谢途径、降解过程。掌握不同药物的作用原理及药物的化学制备过程及药物稳定性的化学基础。了解外周神经系统药物的分类,作用原理、药效关系及代谢途径。药物与神经化学递质、受体、酶抑制剂的概念与新药的研制。了解循环系统药物的分类,药物作用机制和化学设计原则,掌握各种作用于离子通道的代表药物 及构效关系 、药物代谢途径。掌握受体、酶、离子通道和核酸为药物作用靶点进行药物包括各种酶抑制剂设计、研究开发的原理和方法。了解消化系统药物的分类,掌握药物的结构改造、作用原理、构效关系 、化学合成及研究进展。以约占 30%-35%
- 3. 了解解热镇痛药和非 甾 体抗炎药的分类,掌握药物的代谢途径、构效关系 、化学合成及研究进展。了解抗肿瘤药的分类,掌握以 DNA 为作用靶和有丝分裂过程为作用靶进行抗肿瘤药物研究的原理、方法及其进展。掌握植物有效成分的提取,结构修饰、构效关系 、化学合成和新药研究的原理。了解抗生素的分类,掌握β-内酰胺抗生素、四环素类、氨基糖甙类、大环内酯类及氯霉素的结构特征,代谢途径、 构效关系 ,研究过程及化学合成。了解化学治疗药的分类,掌握各类药物的作用机制、结构特征,代谢途径、构效关系 ,研究过程及化学合成。了解化学合成。了解激素类的分类和内分泌激素的产生及作用。掌握各类药物的命名、生物合成途径、结构特征、构效关系 、代谢和降解途径及化学合成。了解脂溶性和水溶性Vitamin 的化学结构特征。掌握各类药物的命名、作用机制、体内生物合成及转化过程、构效关系 、代谢和降解途径及化学合成。以上约占 35%--45%。
- 4. 要求特别关注新药设计及研究的各种创新性思路、新概念。了解新药发现的基本途径、药物的发展历史及发展方向,掌握新药设计的基本原理、方法。约占 10%-25%。

三、 试卷题型及比例

名词解释、判断题、填空题三种题型不一定每次命题同时全有,比例约占 20%,简答题约占 35%--45%,综合论述题约占 35%--45%。

四、考试形式及时间

考试形式:笔试

课程名称: 计算化学 (入学复式大纲)

一、考试的总体要求

了解一些计算化学的理论计算方法。较系统地掌握药物设计的基本概念和理论基础。了解药物设计研究中涉及到的实验技术和计算机软件。掌握计算机辅助药物设计的基本方法。二、考试的内容及比例

- 1 计算化学中的基本概念和理论计算方法。本部分约占 10-25%。
- 2 药物设计的基本概念和理论基础。本部分约占 20-35% 。
- 3 药物设计的有关论理计算基础、实验技术。本部分约占 10-25%。
- 4 计算机辅助药物设计的基本方法和代表性软件。本部分约占 20-35%。

三、 试卷题型及比例

填空题, 选择题, 简答题, 综合论述题。

题型 不一定每次命题同时全有, 比例:填空题约占 10-20%, 选择题 约占 10-20%, 简答题约占 20%--40%,综合论述题约占 20%--40%。

四、 考试形式及时间

考试形式:笔试

考试时间: 1小时

五、主要参考教材(参考书目)

- 1. <<计算机辅助药物设计导论>>(复旦大学药学院 叶德永编, 化学工业出版社,北京,2004). 重点章节为第 1, 2, 4 \sim 7 章。
- 2. << 计算化学及其应用 >> (陈念贻 , 许志宏 , 刘洪霖等 , 上海科学技术出版社 , 上海 , 1987) 重点章节为第三章第一节,第四章第一、二、

课程名称: 药剂学 (入学考试复试课程大纲)

一、考试总体要求

掌握药剂学的研究内容及方法;掌握药剂学及其分支学科的基本任务;掌握药物剂型的分类;掌握常用药物剂型设计的基本理论,基本处方分析,制备过程,质量要求;结合剂型制备熟悉重要单元操作及主要设备的原理和应用;结合剂型制备掌握重要辅料的性能特点;掌握制剂中药物降解的途径,规律和影响因素,并熟悉制剂配伍中常见的物理变化和化学变化的原理和一般处理原则;掌握药物制剂的新技术与新剂型的基本类型、重要辅料和特点,熟悉一般制备方法。

二、考试内容及比例

- 1.药物剂型概论:掌握药剂学的内容和任务,各种剂型、方剂的概念,熟悉药典概况,了解药剂学的发展史,掌握常用药物剂型设计基本理论,基本处方分析和制备过程中所涉及到的理论原理、重要单元操作和质量要求,重要辅料的性能特点。(40-50%)。
- 2.药物制剂的基本理论:掌握药物制剂设计的基础和处方前工作,掌握药物重要理化性质对处方设计的意义;掌握稳定性研究的意义和化学动力学有关概念,影响制剂降解的各种因素(各种药物化学降解途径)和解决制剂稳定性的各种方法;掌握表面活性剂的基本性质及在药物制剂中的应用;掌握流变学与粉体学的基本知识及其在药物制剂中的应用。(30-40%)3.药物制剂的新技术与新剂型:掌握包合技术、固体分散技术、微囊化技术的定义、载体材料与应用特点;掌握缓、控释制剂的基本概念与作用特点,熟悉控制释药的原理和方法;不同类型缓、控释制剂的处方与工艺;掌握经皮吸收制剂的应用特点、设计原理;掌握靶向制剂的基本概念、作用特点。(20-30%)

三、试卷题型及比例

名词解释、判断题、填空题、选择题、简答题、综合论述题。 名词解释和简答题约占 10-30%,判断题、填空题和 选择题 不一定每次命题同时全有,所占比例也有变化,约 10-40%,综合论述题约占 30-40%。

四、考试形式及时间

考试形式:笔试

考试时间: 1.5 小时

课程名称:天然药物化学 (入学复试大纲)

一、考试的总体要求

系统掌握天然产物化学的基本知识,明确重要天然产物的主要化学成分,掌握各类天然产物化学成分(主要是生理活性成分)的结构特点、物理化学性质、提取分离方法、主要类型化学成分的结构鉴定知识、以及天然化合物生物合成的基础知识。

二、考试的内容和比例

- 1. 掌握天然产物化学成分提取、分离的原理及方法,中草药有效成分分离方法的原理,包括各种层析方法(正相硅胶、聚酰胺、葡聚糖凝胶、大孔吸附树脂法、反相硅胶、HPLC)和两相溶剂萃取法的原理及方法,了解天然产物化学成分结构研究的主要程序及采用的方法,天然产物化学的发展及其在药学专业中的地位。相关内容占30-40%。
- 2. 了解糖和苷类化合物的结构、分类、性质、苷键裂解的规律及波谱的基本知识。
- 3. 掌握苯丙素(包括香豆素和木脂素)的定义和类型,了解其生物合成途径。
- 4. 掌握醌类化合物的结构类型、性质、提取分离方法、波谱特征。
- 5. 掌握黄酮类化合物的结构类型、理化性质、提取分离方法和波谱在测定结构中的应用。相关内容占 5-15%。
- 6. 掌握萜类的定义、生源的异戊二烯定则、单萜和倍半萜及二萜的重要化合物及挥发油的 有关知识。相关内容占 5-15%。
- 7. 掌握三萜及其苷类的结构类型、分类、理化性质及波谱特征。相关内容占 5-15%。
- 8. 掌握强心苷的分类、理化性质、苷键裂解、显色反应和甾体皂苷的分类、理化性质。
- 9. 掌握生物碱的定义、分类、理化性质(溶解度、检识反应、碱性、C-N 键的裂解反应)、提取分离方法和波谱鉴定。相关内容占 5-15%。

三、试卷类型和比例

题型包括名词解释、填空题、简答题和论述题。论述题约占 40%, 简答题约占 30%, 名词解释和填空题各约占 15%。

四、考试时间和形式

考试时间: 1.5 小时 考试形式: 笔试

课程名称: 药用植物与生药学(入学考试复试课程大纲)

一、考试的总体要求

应系统掌握药用植物与生药学的基本知识。掌握药用植物细胞、组织和器官的特征与显微构造。掌握药用植物分类学的基本知识和分类方法。掌握生药的记载与分类、生药的鉴定、采收、加工与贮藏、中药的炮制等基础知识。对常用的生药应熟悉其来源、性状、显微特征、理化鉴别、化学成分、药理活性、性味功效等。此外,要了解药用植物生物技术、资源保护与可持续利用、以及生药的质量标准与控制等内容。

二、考试的内容和比例

- 1. 药用植物学基础:包括药用植物的细胞和组织、根、茎、叶、花、果实、种子的形态与显微构造、药用植物分类概论。以上内容重点掌握基本的概念、形态和显微特征,以及植物分类的基础知识。 20%
- 2. 生药学基础:包括生药的分类与记载、生药的化学成分及其生物合成、生药的鉴定、生药的采收、加工与贮存、中药的炮制、生药质量标准的制定与控制。其中生药的分类与记载、生药的鉴定、中药的炮制作为生药学的重点。 13%
- 3. 药用植物重要类群与重要生药:包括低等药用植物和高等药用植物、动物类和矿物类生

药。重点为重要药用植物的科属特征、亲缘关系与性状特征、重要生药的来源、性状、显微特征、理化鉴别、化学成分、药理活性、性味功效等。以真菌、裸子植物、被子植物为重点。重点掌握以下药材,冬虫夏草、麻黄、银杏、大黄、何首乌、黄连、白芍、厚朴、板蓝根、山楂、黄芪、甘草、黄柏、人参、三七、当归、川芎、柴胡、马钱子、龙胆、薄荷、丹参、黄芩、洋金华、地黄、金银花、天花粉、桔梗、红花、半夏、川贝母、砂仁、莪术、天麻、鹿茸、麝香、牛黄、朱砂等。 27%

- 4. 药用植物生物技术:包括药用植物组织和细胞培养、药用植物的基因工程。重点掌握基本概念,并与中药现代化相联系。 7%。
- 5. 生药资源的开发利用和保护:包括生药资源的状况和开发利用方法与途径、生药资源的保护现状及可持续利用的对策与措施。重点掌握基本概念,并与中药现代化相联系。 13% 三、试卷类型和比例

题型包括名词解释、填空题、简答题和论述题。论述题约占 40%, 简答题约占 30%, 名词解释和填空题各约占 15%。

四、考试时间和形式

考试时间: 1小时考试形式: 笔试

课程名称: 药物分析 (入学复试大纲)

一、考试的总体要求

应较系统地掌握药物研发、生产和临床研究过程中所涉及的分析方法和质量控制知识。 重点掌握现代分离(色谱和电泳)、光谱(紫外 / 可见、红外、核磁)、质谱和热分析技术 的工作原理、仪器结构以及在药物分析中的应用。了解在 GLP/GMP 环境下药物分析方法的 建立、验证和药品报批中对分析数据的要求

- 二、考试的内容及比例
- 1. 掌握药物分析的任务与作用,明确药物分析在药物研发和生产过程中不同阶段所服务的对象和要点(5-10%)
- 2. 掌握药物分析有关的统计学基础知识(5-15%)
- 3. 掌握药物分析有关的常用化学分析和仪器分析(色谱、电泳、紫外 / 可见、红外、核磁和质谱)的基本原理和方法。(20-45%)
- 4. 了解药用化合物物理常数测定的基本原理及常用方法,生化药物分析的基本程序和方法,制剂分析的特点和方法(15-35%)
- 5. 熟悉药物纯度的概念。了解药品中的杂质来源,各类药物典型含量测定方法和杂志检查的原理和方法(包括杂志检查中的限量表示方法和计算)。熟悉药物和药品中的杂志和降解产物的分离、纯化与鉴定的现代方法(15-30%)
- 6. 了解中国药典和几种常用外国药典的内容和特点,熟悉药品标准制定的基本原则和主要内容。有关药品质量标准制订的基本内容和程序(5-15%)
- 三、试卷题型及比例

名词解释、判断题、填空题、计算题、简答题、综合论述题。名词解释和简答题占 10-30%,判断题、填空题和计算题不一定每次命题同时全有,所占比例也有变化,约 10-40%,综合论述题占 30-50%

四、考试形式及时间

考试形式:笔试 , 考试时间: 1.5 小时

课程名称:分子生物学 (入学复试大纲)

一、考试的总体要求:

掌握分子生物学的基本概念,包括基因及其表达调控,基因工程的原理和常用技术方法及其应用。

- 二、 考试的内容及比例
- o 基因的复制和转录 -20%
- o DNA 复制的过程
- o 参与 DNA 复制的酶与蛋白质(重点是真核生物的 DNA 聚合酶)
- o 真核生物与原核生物 DNA 复制的比较
- o 转录的过程和机制(重点是真核生物的转录过程)
- o RNA 的后加工及其意义
- o 逆转录的过程
- o 逆转录病毒的生活史
- o DNA 转座子及其转座作用的遗传学效应
- o 真核细胞染色体的组成
- o 基因组学
- 2 . 基因的转译 -15%
- o 遗传密码的特点
- o 转译 的过程
- o 参与蛋白质合成的主要分子的种类和功能
- o 真核生物与原核生物 蛋白质合成的区别 。
- 3. 基因表达的调控 -25%

原核基因表达调控

- o 转录调节的类型
- o 启动子与转录起始
- o RNA 聚合酶与启动子的相互作用
- o 乳糖操纵子,色氨酸操纵子和半乳糖操纵子的的调控过程
- o 噬菌体基因表达调控

真核基因表达调控

- o 真核细胞的基因结构
- o 真核基因的断裂结构
- o DNA 甲基化对基因转录的调控
- o 顺式作用元件与基因调控
- o 染色质结构对转录的影响
- o 启动子和增强子对转录的影响
- o 反式作用因子对转录的调控
- o RNA 聚合酶Ⅲ及其下游启动区结合蛋白
- o 其他转录因子及其分子机制
- o RNA 的加工成熟
- o 翻译水平的调控
- o 蛋白质的加工成熟
- o 固醇类和多肽类激素的作用机理的区别
- 4. 基因工程和原理 -25%

- o DNA 克隆的基本原理
- o 常见的基因工程技术
- o 基因克隆和表达载体的基本要素和应用
- o DNA 的测序方法及其过程
- o 基因敲除的方法
- o 蛋白质修饰的方法
- 5. 蛋白质磷酸化 与信号转导 -10%
- o 蛋白质磷酸化过程及其调控
- o 蛋白质磷酸激酶和蛋白质磷酸酯酶的种类和特点
- o MAPK 信号转导途径
- 6. 重要基因和蛋白的慨念 -5%
- o 免疫球蛋白的分子结构和功能
- o 分子伴侣的功能
- o 原癌基因 (C-jun 、 C-fos) 及其调控
- o 癌基因和生长因子的关系
- 三、考试的题型及比例
- o 名词解释 (30%)
- o 简答题 (30%)
- o 分析题 (40%)

四、考试形式及时间

考试方式为笔试,考试时间为 1.5 小时。

课程名称:细胞生物学(入学复试大纲)

- 一、基本要求:要求考生全面系统地掌握细胞生物学的基本内容和主要研究方法,对细胞生物学的主要发展趋势和前沿领域有充分的了解,具备较强的分析问题与解决问题的能力。 二、考试内容
- 1. 细胞膜的基本成分与功能;细胞膜流动镶嵌模型的基本要点
- 2. 细胞连接的类型,结构特征和功能
- 3. 细胞外基质的物质基础及类型。
- 4. 掌握物质跨膜运输的几种方式: 主动运输、被动运输和胞吞与胞吐作用
- 5. 掌握细胞通讯与信号传递所涉及到的一些概念; 重点掌握通过受体介导的信号传递
- 6. 掌握溶酶体的结构类型和功能
- 7. 掌握细胞内蛋白质的分选途径与类型
- 8. 掌握染色体 DNA 的三种功能元件
- 9. 掌握细胞周期各时期的细胞特点
- 10. 掌握 MPF、p34cdc2、周期蛋白、CDK 激酶等因子对细胞周期运转的调控
- 11. 掌握癌细胞的基本特征,癌基因、抑癌基因的概念
- 12. 掌握细胞衰老的分子机制
- 13. 掌握细胞凋亡的概念、形态学及生化特征,细胞凋亡的分子机制
- 三、试题类型

试题包括概念题及问答题。概念题分为名词解释、填空和选择题三类,约占总分的 40%; 问答题约占总分的 60%。

四、考试形式及时间

考试形式为笔试。考试时间为1.5小时。

课程名称: 药物经济学 (入学复试大纲)

一、考试的总体要求

初步掌握药物经济学的基本概念和分析方法。

- 二、考试的内容及比例
- 1. 基本概念(20%)
- 2. 成本-效果分析(20%)
- 3. 成本-效用分析 (20%)
- 4. 成本-效益分析 (20%)
- 5. 案例分析或与现实结合发挥(20%)

三、试卷题型及比例

名词解释、判断题、选择题、简答题、综合论述题。名词解释、判断题、选择题三种题型不一定每次命题同时全有,比例占 30%;简答题占 35-45%,综合题占 30-45%。

四、考试形式及时间 考试形式:笔试 考试时间: 1.5 小时

课程编号: 51301 课程名称: 传热学(含换热器)

考试的总体要求

要求考生对传热的基础理论、基本概念和换热器的设计计算方法有较全面的了解;要求考生对当前传热学的主要研究方法和动态有所了解。

- 一、 考试的内容及比例: (重点部分)
- (一)《传热学》占80%
- 1. 导热基础理论,稳态导热问题基本概念和计算,不稳态导热问题的基本概念和分析方法,导热问题数值解法的原理,有限差分法;
- 2. 对流换热的基本概念,主要影响因素,边界层的形成和发展,流动边界层和热边界层的概念,对流换热准则数,准则方程,动量传递和热量传递的类比,管内紊流换热,相似理论:
- 3. 对流换热的机理和影响因素,管内受迫对流换热,进口段和充分发展段概念,管内流动换热计算,外掠圆管流动换热,自由流动换热,强化传热的基本途径;
 - 4. 凝结换热的概念和影响因素,沸腾换热的概念和影响因素,热管:
- 5. 热辐射的基本概念,基本定律,辐射换热计算,遮热板,角系数,气体辐射的特点, 火焰辐射和太阳辐射;
 - 6. 复合换热,换热的增强和削弱;
 - 7. 传质的概念和基本定律
 - (二) 换热器 占 20%
 - 1. 换热器的类型和传热特点,对数平均温差;
 - 2. 换热器的计算, 传热单元数, 影响换热器传热的因素;

二、 试卷题型及比例

名词解释、选择占 25%, 简答占 30%, 分析论述题占 45%

三、 主要参考教材

张熙民,任泽霈,梅飞鸣.传热学(第五版).北京:中国建筑工业出版社,2007.

课程编号: 课程名称: 水污染控制工程

一、考试的总体要求

要求考生掌握水和废水处理的基本理论,各种处理工艺的机理、特点及适用性,主要处理构筑物的工作原理、工艺构造和设计计算的基本方法;掌握水处理实验的基本技能,具备对实验结果的分析能力;了解国内外水污染控制技术的发展动态。

二、 考试的内容及比例: (重点部分)

1.水和污水的混凝、沉淀、气浮与澄清(20%)

混凝机理、常用混凝剂、混凝效果的影响因素和混凝工艺的设备;用于污水处理的中和法、化学沉淀法、氧化还原法;沉淀理论、平流式沉淀池的原理及其构造、斜管、斜板式沉淀池的原理及其构造;澄清池的种类与形式、构造与工作原理。

2.水和污水的过滤与消毒(15%)

过滤机理、快滤池的构造、工作原理及其设计计算;其它滤池的构造和工作原理,与快滤池的比较。氯消毒原理,饮用水消毒的其它方法及与氯消毒的比较。

3.水污染总论(15%)

污水的特征和污染指标,水体富营养化,河流中有机物降解与溶解氧平衡的数学模型:污水处理厂的典型流程。

4.污水的生物处理(30%)

活性污泥法的净化过程、机理、运行方式;有机物降解与生物增长动力学;氧传递理论与曝气方法;活性污泥法新工艺;污水生物除磷脱氮技术。

生物膜法净化过程与机理;生物滤池、生物转盘、生物接触氧化法、生物流化床的工作原理与工艺特点。活性污泥法与生物膜法相结合的工艺技术;生物膜法的新进展。污水的自然处理技术。

5.污水、污泥的厌氧处理(10%)

污泥的性质,重力浓缩理论; 厌氧消化的机理与影响因素,消化池工作原理、构造与设计; 污泥消化新工艺。有机污水的厌氧处理技术。

6. 膜分离技术(10%)

微滤、超滤、纳滤、反渗透膜的工作原理。

三、 试卷题型及比例

论述题 60%,简答题 40%。

四.主要参考教材:

- 1、《水质工程》范瑾初,金兆丰主编,严煦世主审,中国建筑工业出版社,2009
- 2、《排水工程》(第四版),张自杰,林荣忱,中国建筑工业出版社,出版时间:2000-6-1

课程编号: 51305 课程名称: 环境保护与可持续发展

一、 考试的总体要求

将考察对环境保护、环境治理、环境工程、全球性环境问题、环境管理、环境法、可持续 发展战略的基本思想和核心理论的了解程度,要求考生能够应用所学的知识分析和解决实际 环境问题。

- 二、 考试的内容: (重点部分)
- 1. 掌握环境保护的基本知识、基本概念;环境污染控制的基本原理和方法;环境管理、环境规划、环境法基本知识和理论基础;以及可持续发展的基本思想和核心理论。
- 2. 在了解有关人口、资源和环境学科一些基本理论的基础上,全面认识我国的基本国情,了解国际经济发展和资源、环境的形势。
- 3. 了解全球环境问题和我国的环境基本状况。
- 4. 对大气污染及其防治,水体污染及其治理,城市固体废物的处理和利用等应全面理解并掌握。
- 5. 了解可持续发展战略的理论与实施,解决资源的可持续利用、人口与可持续发展、城市、农业、清洁生产以及经济与社会可持续发展等问题。
- 三、 试卷题型及比例

基本概念 30%. 简答题 30%.论述题 40%。

四.主要参考教材:

环境科学--交叉关系学科(第10版),[美]Eldon D Enger等著,王建龙等译,清华大学出版社,2009

课程编号: 课程名称: 建筑环境学

考试的总体要求

要求考生对建筑环境营造的基础理论、基本概念和计算方法有较全面的了解;要求考生对当前建筑环境的主要研究方向和方法有所了解。

- 一、考试内容:
- 1. 建筑外环境:太阳辐射特性,室外气候因素对建筑环境的影响机理,我国建筑热工设计分区和气候分区,城市热岛效应及形成机理;
- 2. 室内空气环境: 主要室内空气污染物种类,室内空气品质定义和评价方法,建筑室内空气污染控制基本方法,通风稀释方程,自然通风原理,室内气流组织评价和分析基本方法;
- 3. 室内热湿环境:室内热湿环境形成的基本理论,围护结构热工特性,得热和负荷基本概念,得热与负荷的转化关系,当前冷热负荷计算原理;
- 4. 人体热舒适理论:稳态环境人体热舒适理论,热感觉和热舒适基本概念,人体热平衡方程,稳态环境热舒适主要评价方法和指标,整体热舒适评价指标和局部热不舒适评价指标,动态环境和稳态环境的热舒适差异;
- 5. 建筑声环境: 声音的基本特性,声音的度量,环境噪声的主要评价方法,噪声控制的基本原理和方法,空调消声器的种类和消声原理;
- 6. 建筑光环境: 光度量指标(光通量、发光强度、照度等)基本概念和计算方法,人工光源种类和特性;
- 二、试卷题型及比例

简答占 35%, 分析论述题占 65%

三、主要参考教材

朱颖心. 建筑环境学(第三版). 北京: 中国建筑工业出版社, 2010.

课程编号: 课程名称:基因工程

一、考试的总体要求

要求考生了解基因工程及相关领域的相关知识。掌握基因工程的基本原理、技术及其应用,并具有综合运用所学知识分析问题和解决问题的能力。

二、考试内容

- 1、基因工程操作技术和概念及原理,核酸分子的提取技术,电泳技术,各种酶的使用,基因克隆,DNA体外重组,载体构建,转化,植物转基因技术,转基因动物技术,重组体的筛选与鉴定,培育新型品种。
- 2、抗除草剂基因、类胡萝卜素生物合成酶基因、抗逆基因及其应用。
- 3、基因文库的类别,基因组文库的构建,cDNA文库构建,利用 PCR 技术构建 cDNA文库,减法 cDNA文库的 PCR 法构建,人工染色体文库,基因文库筛选方法。
- 4、功能蛋白质双向电泳技术,功能蛋白质氨基酸序列分析,功能蛋白基因分离。
- 5、PCR 的基本原理与基本技术, RT-PCR 原理与技术, RACE 技术。
- 6、mRNA 差异显示技术的基本原理, mRNA 差异显示技术分离差别表达基因的程序及注意事项。
- 7、插入突变分离克隆目的基因主要方法,插入失活筛选重组体,插入接头突变分离克隆目的基因,T-DNA标签法分离克隆目的基因,转座子诱变分离克隆目的基因。
- 8、图位克隆目的基因基本原理,图位克隆的基本程序。
- 9、酵母双杂交系统的基本原理和内容,酵母双杂交系统的基本操作程序,酵母双杂交系统的特点分析。
- 10、根癌农杆菌 Ti 质粒的结构与功能,农杆菌 Ti 质粒基因转化的机理,载体构建中常用的选择标记基因及报告基因。
- **11**、植物组织培养的原理、影响因素及主要操作过程,植物转基因的主要方法、原理与主要操作步骤。
- 12、根癌农杆菌转化策略,根癌农杆菌转化程序及操作原理,根癌农杆菌 Ti 质粒转化的方法。
- 13、报告基因 gfp、 gus、 cat 等的表达检测,外源基因整合的 Southern 杂交鉴定,外源基因转录的 Northern 杂交检测。
- 14、外源基因表达蛋白的检测,如 ELISA 检测、Western 杂交等。
- 15、基因工程领域取得的具有影响的主要成就。

三、考试的题型及比例

试题包括概念题及简答题及论述题。概念题分为名词解释和选择题两类,约占总分的 20~25%; 简答题一般为 5-7 题,约占总分的 60%,论述题一般为 1 题,约占总分的 15~20%。

四、考试形式及时间

考试形式为笔试,考试时间按届时天津大学研究生院的具体要求定。

课程编号: 课程名称:数据库与编译原理

一、数据库部分(共35分)

1.考试的总体要求

数据库是计算机科学与技术专业的专业基础课,要求考生掌握数据库管理系统的基本原理,能够掌握数据库设计的步骤,管理数据库.了解多用户状态下数据库的并发操作,事务处理机制.了解优化数据库性能的基本方法.熟练应用 SQL,了解数据库应用开发的基本方法

2.考试的内容及比例

本课程考试的内容包括:

- 1) 数据库基本概念:关键字,外关键字,索引,函数依赖,范式,事务管理(10%)
- 2) 关系查询:关系代数,SQL,完整性约束的定义。(30%)
- 3) 数据库设计: 关系模式的范式化(1NF,3NF,BCNF), 安全 35%
- 4) 事务管理:并发控制,崩溃恢复。(25%)
- 3.试卷题型及比例

考试题型: 客观题(选择题,判断题), 主观题(简答题,计算题等)

比例: 客观题(60%) 主观题(40%)

二、编译原理部分

1.考试总体要求

编译原理是计算机专业重要的专业课,它是计算机专业最为恰当、有效的知识载体之一。它涉及的内容既抽象又实际,其课程中介绍的思想、方法以及实现在计算机科学的研究中会反复用到。本课程的考试要求考生了解和掌握编译程序总体结构,在系统级上认识算法、系统的设计;学习有关原理、实现技术和方法;了解计算机学科的基本方法、思想等。通过考生对试题的分析与解答,了解考生对《编译原理》课程的理解程度,考查考生分析问题和解决问题的能力。

2.编译原理考试的内容及比例

编译原理考试内容包括(共30分)

1) 编译程序的基本概念、编译的过程和编译器的总体结构

2) 语言的基本知识(文法分类、分析树等) 20%

3) 词法分析的基本方法和有穷自动机

4) 语法分析(自顶向下和自底向上的分析方法) 30%

5) 语法制导翻译和中间代码生成

10%

30%

10%

3.编译原理试卷题型及比例

单项选择题: 40% 概念解释题: 20%

证明推导题: 40%

4.考试形式及时间

考试形式为笔试,考试时间为90分钟,满分65分

5.参考书目

《数据库管理系统》,周立柱,清华大学出版社

《编译原理》(第二版)张素琴,吕映芝、蒋维杜,戴桂兰,清华大学出版社

课程编号: 51106

课程名称: 先秦诸子哲学

一、 考试的总体要求

主要考查考生对先秦儒、道、墨、法、名诸家代表人物哲学思想的掌握情况,并要求考生具有一定的古籍阅读能力。

二、 考试内容及比例

儒、道哲学各占 35%; 其他占 30%。

- 三、 试卷类型及比例
- 1、概念、命题解释约占 40%;
- 2、简答题约占60%。

四、考试形式及时间

复试形式:笔试:考试时间:一小时。

课程编号:

课程名称: 科学技术哲学

一、 考试的总体要求

本门专业课主要考察学生对科学技术哲学各分支学科--自然观、科学技术论与科学技术创新方法论的基本概念和基本原理了解和认识的广度和深度,以及运用所学知识分析和认识科学技术创新及其与经济、社会、环境协调发展的实际问题的能力和水平。

- 二、考试的内容及比例
- 1、自然观(含人与自然的关系),占 10-20%

自然科学的发展与人类自然观的演变;自然界的物质形态与层次结构及其运动形式与相互作用;元素、天体及"宇宙"的起源;人类与自然的关系的历史演变及当代环境问题。

2、科学论与技术论,占 40-45%

自然科学及其体系结构;科学研究及其基本类型;自然科学发展的统计性规律;社会诸因素影响自然科学发展的内在机制与一般模式;自然科学的认识功能、生产力功能、"变革"社会功能和环境功能;当代自然科学发展的特点和趋势。

自然科学与技术的联系和区别;技术的体系结构及其社会功能,技术发展的影响因素、基本途径和主要趋势。

科学、技术、经济、社会、环境协调发展的机制与模式、战略与政策。

3、科学创新方法论与技术创新方法论,占 40-45%

科学创新的一般程序;科学问题与科研选题;科学观察与科学实验的设计和进行;逻辑与创造性思维:科学假说的形成与检验:科学理论的创立与发展。

技术创新的一般程序;技术需求与技术预测;技术项目与技术目标;技术方案的构思与技术 模型的设计;技术成果的鉴定与推广。

科学创新、技术创新与创新人才的素质和培养。

三、 试卷类型及比例

1、填空与选择题: 10-15% 2、简答题: 35-40% 3、论述题: 50-55%

四、 考试形式及时间

考试形式:笔试。考试时间:1.5小时。

课程编号: 课程名称: 中国近现代史

一、考试的总体要求

要求考生对中国 1840 年以来的历史史实(特别是政治史)有基本的了解和掌握。

- 二、考试内容及比例
- 3 个论述题:中国近代史(1840-1949), 2 个题, 40 分;中国现代史(1949-) 1 个题, 25 分。
- 三、考试形式及时间

笔试, 1.5 个小时。

四、主要参考教材

- 1.《中国近现代史纲要》,高等教育出版社,2010年版。
- 2. 章开沅、朱英主编,《中国近现代史》,河南人民出版社,2009年版

课程编号: 51108

课程名称: 科学社会主义理论

一、考试的总体要求

本门课程主要考查考生对科学社会主义的研究对象、在马克思主义理论中的地位、世界社会主义在一个半世纪里所积累的正反两方面的丰富经验和深刻教训、当代资本主义发展的新情况和新问题、中国特色社会主义的创造性实践积累的成功经验等。主要考查考生理论联系实际的分析能力、辨别是非的能力以及综合解决问题的能力。

二、考试内容及比例

世界社会主义发展的经验和教训 40%,当代资本主义发展的新情况和新问题 40%,中国特色社会主义的发展和经验 20%。

三、考试形式及时间

复试形式为笔试;复试时间为1.5个小时。

四、主要参考教材

- 1、《马克思主义基本原理概论》高等教育出版社 2009 年。
- 2.《科学社会主义教程》中共中央党校出版社 2004 年。
- 3.《科学社会主义理论与实践》华中科技大学出版社 2003 年。

课程编号: 课程名称:免疫学与病毒学

免疫学

一、 基本要求:

要求考生掌握免疫学的基本内容和主要研究方法,对免疫学的主要发展趋势和前沿领域有充分的了解,具备较强的分析问题与解决问题的能力。

二、考试内容

免疫及其三大主要功能; 抗原的基本概念与医学上重要的抗原; 单核巨噬细胞的主要表面膜分子及生物学功能; 抗体的基本分子组成与生物学功能; T细胞在在胸腺内的发育; T细胞表面表达的主要膜分子及其功能; T细胞亚群及其功能; B细胞表面表达的主要膜分子及其功能; 抗原提呈细胞的概念与树突状细胞; 补体的三条激活途径和生物学功能; 细胞因子的概念与部分重要细胞因子的主要生物学功能; HLA-I 类和 HLA-II 类分子的分布及主要生

物学功能; 抗体产生过程中细胞间的相互作用; 抗体介导的免疫效应; 抗原提呈过程与 T 细胞对抗原的识别; T 细胞的活化信号刺激; T 细胞介导的免疫效应; 免疫耐受的基本概念; 抗体的独特型—抗独特型网络调节; I、II、III、IV 型超敏反应的发生机制; 部分经典及现代常用的免疫学技术。

病毒学

一、考试的总体要求

掌握病毒的基本概念,包括病毒复制周期及其调控,病毒与人类的关系和病毒学常用技术方法及其应用。要求考生掌握病毒的结构特点、复制原理、基因的表达调控、致病机制、免疫机理和防治原则以及病毒载体与基因治疗;掌握与人类病毒性疾病密切相关的人类免疫缺陷病毒和乙型肝炎病毒、肠道病毒以及 SARS 病毒等。

二、考试的内容

病毒的基本概念;病毒的组成及基因组;病毒生命周期及其调控机制;重要病毒与病毒病;病毒感染特点与免疫;病毒与病毒生物技术。

- 1、病毒的结构与化学组成、病毒的复制周期。
- 2、病毒感染的类型;熟悉病毒的致病机制。
- 3、病毒基因表达调控原理和过程。
- 4、抗病毒免疫的细胞和分子机制;了解病毒免疫逃逸的机制。
- 5、病毒载体与基因治疗。
- 6、HIV的形态结构、基因结构及其编码蛋白的种类和功能。
- 7、HIV 的复制过程及与临床感染的关系。
- 8、HBV的形态结构、基因结构及其编码蛋白的种类、功能。
- 9、HBV的复制过程及感染发病机制。
- 10、 肠道病毒的病原学、感染发病机制、临床过程;了解其诊断和治疗原则。
- 11、 SARS 的病原学、感染发病机制、临床过程;了解其诊断和治疗原则。

三、试题类型

试题包括概念题及问答题。概念题分为名词解释、填空两类,约占总分的 40%;问答题约占总分的 60%。

四、考试形式及时间

考试形式为笔试。考试时间为 1.5 小时。

参考书目:

《分子病毒学(第二版)》黄文林,人民卫生出版社,2002年8月;

《医学免疫学》孙汶生,王福庆,第1版,高等教育出版社,2006年8月。