2013年上海市初中毕业统一学业考试数学试卷

一、选择题

	エントント	日十日然一小担子44日 /	_
Ί.	下列式 十甲,	属于最简二次根式的是()

A. $\sqrt{9}$

B. $\sqrt{7}$

C. $\sqrt{20}$

D. $\sqrt{\frac{1}{3}}$

2. 下列关于x的一元二次方程有实数根的是()

A. $x^2 + 1 = 0$

B. $x^2 + x + 1 = 0$ **C.** $x^2 - x + 1 = 0$ **D.** $x^2 - x - 1 = 0$

3. 如果将抛物线 $y = x^2 + 2$ 向下平移 1 个单位,那么所得新抛物线的表达式是()

A. $y = (x-1)^2 + 2$ **B.** $y = (x+1)^2 + 2$ **C.** $y = x^2 + 1$ **D.** $y = x^2 + 3$

4. 数据 0, 1, 1, 3, 3, 4 的中位数和平均数分别是()

A. 2 和 2.4

B.2和2

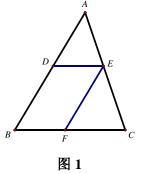
C.1和2

D.3和2

5. 如图 1,已知在 $\triangle ABC$ 中,点 D、E、F 分别是边 AB、AC、BC 上的点,DE //BC, EF//AB, 且 AD: DB = 3:5, 那么 CF: CB 等于(

A. 5:8

B.3:8


C.3:5

D. 2:5

6. 在梯形 ABCD 中,AD // BC,对角线 AC 和 BD 交于点 O,下列条件中,能判 断梯形 ABCD 是等腰梯形的是()

A. $\angle BDC = \angle BCD$ B. $\angle ABC = \angle DAB$

C. $\angle ADB = \angle DAC$ D. $\angle AOB = \angle BOC$

二、填空题

7. 因式分解: $a^2-1=$

8. 不等式组 $\begin{cases} x-1>0 \\ 2x+3>x \end{cases}$ 的解集是_

9. 计算: $\frac{3b^2}{a} \cdot \frac{a}{b} =$ ______.

10. 计算: $2(\bar{a}-\bar{b})+3\bar{b}=$ _____.

11. 已知函数 $f(x) = \frac{3}{x^2 + 1}$, 那么 $f(\sqrt{2}) = \underline{\hspace{1cm}}$.

12. 将"定理"的英文单词 theorem 中的 7 个字母分别写在 7 张相同的卡片上,字面朝下随意放在桌子上, 任取一张, 那么取到字母 e 的概率为

13. 某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图 2 所示,那么报名参加甲组和丙组的人数 之和占所有报名人数的百分比为

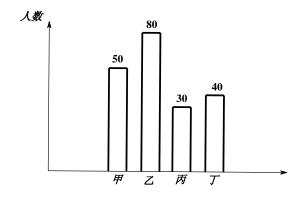


图 2

14. 在 \Box O 中,已知半径长为 3,弦 AB 长为 4,那么 \Box O 到 AB 的距离为______. 15. 如图 3,在 \triangle ABC 和 \triangle DEF 中,点 B、F、C、E 在同一直线上,BF = CE,AC//DF,请添加一个条件,使 \triangle ABC \cong \triangle DEF ,这个添加的条件可以是_______(只需写一个,不添加辅助线).

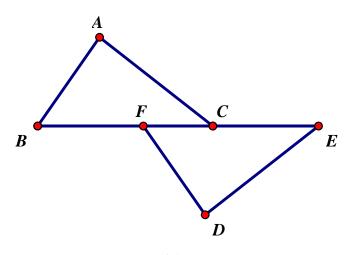
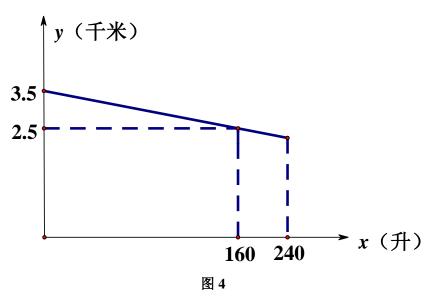
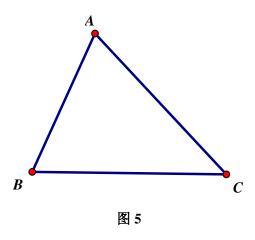



图 3

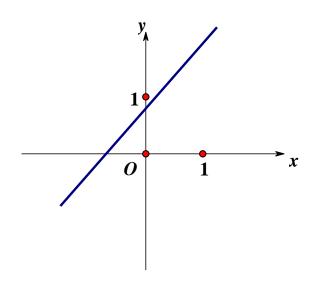


上海学而思教育

17、当三角形中的一个内角 α 是另一个内角 β 的两倍时,我们称此三角形为"特征三角形",其中 α 称为"特征角",如果一个"特征三角形"的"特征角"为 100° ,那么这个"特征三角形"的最小内角的度数为

18、如图 5,在 $\triangle ABC$ 中, AB = AC, BC = 8, $\tan C = \frac{3}{2}$,如果将 $\triangle ABC$ 沿直线 l 翻折后,点 B 落在边 AC 的中点处,直线 l 与边 BC 交于点 D,那么 BD 的长为______.

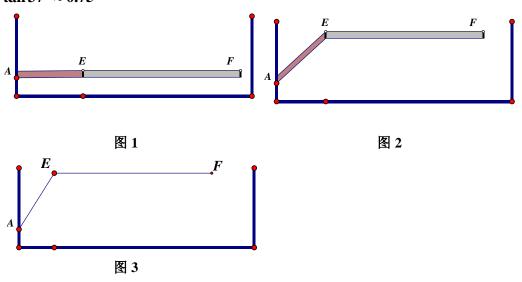
三、解答题


19. 计算:
$$\sqrt{8} + \left| \sqrt{2} - 1 \right| - \pi^0 + \left(\frac{1}{2} \right)^{-1}$$

20. 解方程组
$$\begin{cases} x - y = -2 \\ x^2 - xy - 2y^2 = 0 \end{cases}$$

21. 已知平面直角坐标系 xOy(如图 6),直线 $y = \frac{1}{2}x + b$ 经过一、二、三象限,与 y 轴交于点 B,点 A(2, t) 在这条直线上,联结 AO, $\triangle AOB$ 的面积等于 1。

(1) 求 b 的值;


(2) 如果反比例函数 $y = \frac{k}{x}$ (k 是常量, $k \neq 0$) 的图像经过点 A,求这个反比例函数的解析式。

上海学而思教育

22. 某地下车库出口处"两段式栏杆"如图 1 所示,点 A 是栏杆转动的支点,点 E 是栏杆两段的连接点。当车辆经过时,栏杆 AEF 升起后的位置如图 2 所示,其示意图如图 3 所示,其中 AB \perp BC,EF/BC, \angle EAB = 143°,AB = AE = 1.2 米,求当车辆经过时,栏杆 EF 段距离地面的高度(即直线 EF 上任意一点到直线 BC 的距离)。(结果精确到 0.1 米,栏杆宽度忽略不计)参考数据: $\sin 37^\circ \approx 0.60$, $\cos 37^\circ \approx 0.80$, $\tan 37^\circ \approx 0.75$

- 23. 如图 8, 在 △ABC 中, ∠ACB=90°, ∠B>∠A, 点 D 为边 AB 的中点, DE//BC 交 AC 于点 E, CF//AB 交 DE 的延长线于点 F。
- (1) 求证: **DE** = **EF**;
- (2) 连结 CD, 过点 D 作 DC 的垂线交 CF 的延长线于点 G, 求证: $\angle B = \angle A + \angle DGC$ 。

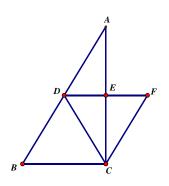


图 8

- **24.** 如图 9,在平面直角坐标系 **xOy** 中,顶点为 M 的抛物线 $y = ax^2 + bx(a > 0)$ 经过点 A(2, t) 和 x 轴正 半轴上的点 B,AO = BO = 2, \angle AOB = 120°。
- (1) 求这条抛物线的表达式;
- (2) 联结 OM, 求∠AOM 的大小;
- (3) 如果点 C 在 x 轴上,且 ΔABC 与 ΔAOM 相似,求点 C 的坐标。

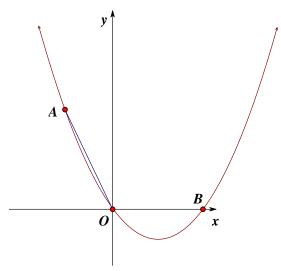
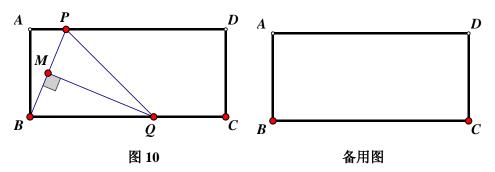



图 9

- 25. 在矩形 ABCD中,点 P 是边 AD 上的动点,联结 BP,线段 BP 的垂直平分线交边 BC 于点 Q,垂足为点 M,联结 QP(如图 10),已知 AD = 13, AB = 5 ,设 AP = x,BQ = y
- (1) 求 y 关于 x 的函数解析式, 并写出 x 的取值范围
- (2) 当以 AP 长为半径的 \square P 和以 QC 长为半径的 \square Q 外切时,求 x 的值
- (3) 点 E 在边 CD 上,过点 E 作直线 QP 的垂线,垂足为 F,如果 EF = EC 4,求 x 的值

