2016年上海市初中数学课程终结性评价指南

一、评价的性质、目的和对象

上海市初中毕业数学统一学业考试是义务教育阶段的终结性评价。它的指导思想是有利于落实"教考一致"的要求,切实减轻中学生过重的学业负担;有利于引导初中学校深入实施素质教育,推进课程教学改革;有利于培养学生的创新精神和实践能力,促进学生健康成长和全面和谐、富有个性的发展。评价结果是初中毕业生综合评价的重要组成部分,是衡量初中学生是否达到毕业标准的重要依据,也是高中阶段各类学校招生的重要依据。

评价对象为2016年完成上海市全日制九年义务教育的学生。

二、评价标准

(一)能力要求

依据《上海市中小学数学课程标准(试行稿)》(2004年10月版)规定的初中阶段(六至九年级)课程目标,确定如下具体能力要求。

1. 基础知识和基本技能

- 1.1 知道、理解或掌握初中数学基础知识。
- 1.2 领会初中的基本数学思想,掌握初中的基本数学方法。
- 1.3 能按照一定的规则和步骤进行计算、画(作)图、推理。

2. 逻辑推理能力

- 2.1 掌握演绎推理的基本规则和方法。
- 2.2 能简明和有条理地表述演绎推理过程, 合理解释推理演绎的正确性。

3. 运算能力

- 3.1 知道有关算理,能根据问题条件,寻找和设计合理、有效的运算途径。
- 3.2 能通过运算进行推理和探求。

4. 空间观念

- 4.1 能进行几何图形的基本运动和变化。
- 4.2 能够从复杂的图形中区分基本图形,并能分析其中的基本元素及其关系。
- 4.3 能由基本图形的性质导出复杂图形的性质。

5. 解决简单问题的能力

- 5.1 能对文字语言、符号语言和图形语言进行相互转译。
- 5.2 知道一些基本的数学模型,并通过运用,解决一些简单的实际问题。
- 5.3 初步掌握观察、操作、比较、类比、归纳的方法;懂得"从特殊到一般"、"从一般到特殊"及"转化"等思维策略。

- 5.4 会用已有的知识经验,解决新情境中的数学问题。
- 5.5 能初步对问题进行多方面的分析,会用已有的知识经验对问题解决的过程和结果进行反思、质疑、解释。

(二) 知识内容

依据上海市教育委员会《上海市中小学数学课程标准(试行稿)》(2004年10月版)规 定的初中阶段(六至九年级)的内容与要求,就相关知识与技能,明确相应评价内容及要求。

1.评价内容中各层级的认知水平、基本特征及其表述中所涉及的行为动词如下表所示:

水平层级	基本特征			
	能识别和记住有关的数学事实材料,使之再认或再现;能在标准的情境			
记忆水平	中作简单的套用,或按照示例进行模仿			
(记为 I)	用于表述的行为动词如:知道,了解,认识,感知,识别,初步体会,			
	初步学会等			
	明了知识的来龙去脉,领会知识的本质,能用自己的语言或转换方式正			
解释性理解	确表达知识内容; 在一定的变式情境中能区分知识的本质属性与非本质			
水平	属性,会把简单变式转换为标准式,并解决有关的问题			
(记为II)	用于表述的行为动词如:说明,表达,解释,理解,懂得,领会,归纳,			
	比较,推测,判断,转换,初步掌握,初步会用等			
	能把握知识的本质及其内容、形式的变化; 能从实际问题中抽象出数学			
北京安林·田 <i>和</i>	模型或作归纳假设进行探索,能把具体现象上升为本质联系,从而解决			
探究性理解水平	问题;会对数学内容进行扩展或对数学问题进行延伸,会对解决问题过			
/4-1	程的合理性、完整性、简捷性的评价和追求作有效的思考			
(记为Ⅲ)	用于表述的行为动词如:掌握,推导,证明,研究,讨论,选择,决策,			
	解决问题,会用,总结,设计,评价等			

2.具体评价知识内容及相应水平层级要求如下:

(1) 数与运算

内容	水平层级
1.1 数的整除性及有关概念	I
1.2 分数的有关概念、基本性质和运算	II
1.3 比、比例和百分比的有关概念及比例的基本性质	II
1.4 有关比、比例、百分比的简单问题	III
1.5 有理数以及相反数、倒数、绝对值等有关概念,有理数在数轴上的表示	II
1.6 平方根、立方根、n次方根的概念	II
1.7 实数概念	II
1.8 数轴上的点与实数——对应关系	I

1.9 实数的运算	III
1.10 科学记数法	II

(2) 方程与代数

内容	水平层级
2.1 代数式的有关概念	II
2.2 列代数式和求代数式的值	II
2.3 整式的加、减、乘、除及乘方的运算法则	III
2.4 乘法公式[平方差、两数和(差)的平方公式]及其简单运用	III
2.5 因式分解的意义	II
2.6 因式分解的基本方法(提取公因式法、分组分解法、公式法、二次项系数为 1 的二次三项式的十字相乘法)	III
2.7 分式的有关概念及其基本性质	II
2.8 分式的加、减、乘、除运算法则	III
2.9 整数指数幂的概念和运算	II
2.10 分数指数幂的概念和运算	II
2.11 二次根式的有关概念	II
2.12 二次根式的性质及运算	III
2.13 一元一次方程的解法	III
2.14 二元一次方程和它的解以及一次方程组和它的解的概念	II
2.15 二元一次方程组的解法,三元一次方程组的解法	III
2.16 不等式及其基本性质,一元一次不等式(组)及其解的概念	II
2.17 一元一次不等式(组)的解法,数轴表示不等式(组)的解集	III
2.18 一元二次方程的概念	II
2.19 一元二次方程的解法	III
2.20 一元二次方程的求根公式	III
2.21 一元二次方程根的判别式	II
2.22 整式方程的概念	I
2.23 含有一个字母系数的一元一次方程与一元二次方程的解法	II
2.24 分式方程、无理方程的概念	II
2.25 分式方程、无理方程的解法	III
2.26 二元二次方程组的解法	III
2.27 列一次方程(组)、一元二次方程、分式方程等解应用题	III

(3) 函数与分析

内容	水平层级
3.1 函数以及函数的定义域、函数值等有关概念,函数的表示法,常值函数	I
3.2 正比例函数、反比例函数的概念,画正比例函数、反比例函数的图像	II
3.3 正比例函数、反比例函数的基本性质	III
3.4 一次函数的概念, 画一次函数的图像	II
3.5 一次函数的基本性质	III
3.6 二次函数的概念, 画二次函数的图像	II
3.7 二次函数的基本性质	III
3.8 用待定系数法求正比例函数、反比例函数、一次函数、二次函数的解析式	III
3.9 一次函数的应用	III

(4) 数据整理和概率统计

内容	水平层级
4.1 确定事件和随机事件	II
4.2 事件发生的可能性大小,事件的概率	II
4.3 等可能试验中事件的概率计算	III
4.4 数据整理与统计图表	III
4.5 统计的意义	I
4.6 平均数、加权平均数的概念和计算	III
4.7 中位数、众数、方差、标准差的概念和计算	III
4.8 频数、频率的意义和计算,画频数分布直方图和频率分布直方图	II
4.9 中位数、众数、方差、标准差、频数、频率的简单应用	III

(5) 图形与几何

内容	水平层级
5.1 圆周、圆弧、扇形等概念,圆的周长和弧长的计算,圆的面积和扇形面积的计算	II
"	
5.2 线段相等、角相等、线段的中点、角的平分线、余角、补角的概念,求已知角的余角和补角	II
5.3 尺规作一条线段等于已知线段、一个角等于已知角、角的平分线,画线段的和、差、倍及线段的中点,画角的和、差、倍	II
5.4 长方体的元素及棱、面之间的位置关系,画长方体的直观图	I
5.5 图形平移、旋转、翻折的有关概念以及有关性质	II

5.6 轴对称、中心对称的有关概念和有关性质	II
5.7 画已知图形关于某一直线对称的图形、已知图形关于某一点对称的图形	II
5.8 平面直角坐标系的有关概念,直角坐标平面上的点与坐标之间的一一对	II
应关系	11
5.9 直角坐标平面上点的平移、对称以及简单图形的对称问题	III
5.10 相交直线	II
5.11 画已知直线的垂线,尺规作线段的垂直平分线	II
5.12 同位角、内错角、同旁内角的概念	III
5.13 平行线的判定和性质	III
5.14 三角形的有关概念,画三角形的高、中线、角平分线,三角形外角的	II
性质	11
5.15 三角形的任意两边之和大于第三边的性质,三角形的内角和	III
5.16 全等形、全等三角形的概念	II
5.17 全等三角形的性质和判定	III
5.18 等腰三角形的性质与判定(其中涉及等边三角形)	III
5.19 命题、定理、证明、逆命题、逆定理的有关概念	II
5.20 直角三角形全等的判定	III
5.21 直角三角形的性质、勾股定理及其逆定理	III
5.22 直角坐标平面内两点的距离公式	III
5.23 角的平分线和线段的垂直平分线的有关性质	III
5.24 轨迹的意义及三条基本轨迹(圆、角平分线、线段的中垂线)	Ι
5.25 多边形及其有关概念,多边形外角和定理	II
5.26 多边形内角和定理	III
5.27 平行四边形(包括矩形、菱形、正方形)的概念	II
5.28 平行四边形(包括矩形、菱形、正方形)的性质、判定	III
5.29 梯形的有关概念	II
5.30 等腰梯形的性质和判定	III
5.31 三角形中位线定理和梯形中位线定理	III
5.32 相似形的概念,相似比的意义,图形的放大和缩小的画图操作	II
5.33 平行线分线段成比例定理、三角形一边的平行线的有关定理	III
5.34 相似三角形的概念	II
5.35 相似三角形的判定和性质及其应用	III
5.36 三角形的重心	I
5.37 向量的有关概念	II

5.38 向量的表示	I
5.39 向量的加法和减法、实数与向量相乘、向量的线性运算	
5.40 锐角三角比(锐角的正弦、余弦、正切、余切)的概念,30 度、45 度、60 度角的三角比值	II
5.41 解直角三角形及其应用	III
5.42 圆心角、弦、弦心距的概念	II
5.43 圆心角、弧、弦、弦心距之间的关系	III
5.44 垂径定理及其推论	
5.45 点与圆、直线与圆、圆与圆的位置关系及相应的数量关系	
5.46 正多边形的有关概念和基本性质	
5.47 画正三、四、六边形	II

三、试卷结构及相关说明

(一) 试卷结构

1.整卷各能力的分值比例大致如下:基础知识和基本技能部分占 50%,逻辑推理能力部分占 12%,运算能力部分占 13%,空间观念部分占 10%,解决简单问题的能力部分占 15%。

2.整卷各知识内容的分值比例大致如下: "图形与几何"部分占 40%, "数与运算"部分占 5%, "方程与代数"部分占 28%, "函数与分析"部分占 19%, "数据整理和概率统计"部分占 8%。

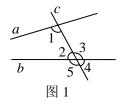
3.整卷含有选择题、填空题和解答题三种基本题型。选择题 6 题, 共 24 分;填空题 12 题, 共 48 分;解答题 7 题, 共 78 分。

(二) 相关说明

- 1.容易、中等、较难试题的分值比例控制在8:1:1左右。
- 2.试卷总分: 150分。
- 3.考试时间: 100 分钟。
- 4.考试形式:闭卷书面考试,分为试卷与答题纸两部分,考生必须将答案全部做在答题纸上。

四、题型示例

(一) 选择题


【例 1】如图 1,已知直线 a 、b 被直线 c 所截,那么 $\angle 1$ 的同位角是

(A) $\angle 2$;

(B) $\angle 3$;

(C) ∠4;

(D) $\angle 5$.

【正确选项】D

【能力要求】基础知识和基本技能/掌握初中数学有关基础知识

【知识内容】图形与几何/同位角的概念

【难度系数】0.96

【例 2】下列关于 x 的一元二次方程有实数根的是

(A)
$$x^2 + 1 = 0$$
;

(B)
$$x^2 + x + 1 = 0$$
;

(C)
$$x^2 - x + 1 = 0$$
:

(D)
$$x^2 - x - 1 = 0$$
.

【正确选项】D

【能力要求】基础知识和基本技能/理解初中数学有关基础知识

【知识内容】方程与代数/一元二次方程根的判别式

【难度系数】0.96

【例3】在下列代数式中,次数为3的单项式是

$$(A) xy^2$$
;

(A)
$$xy^2$$
; (B) $x^3 + y^3$; (C) x^3y ; (D) $3xy$.

(C)
$$x^3y$$

【正确选项】A

【能力要求】基础知识和基本技能/理解初中数学有关基础知识

【知识内容】方程与代数/代数式的有关概念

【难度系数】0.83

【例4】如果两圆的半径长分别为6和2,圆心距为3,那么这两圆的位置关系是

- (A) 外离; (B) 相切; (C) 相交; (D) 内含.

【正确选项】D

【能力要求】基础知识和基本技能/理解初中数学有关基础知识

【知识内容】图形与几何/圆与圆的位置关系及相应的数量关系

【难度系数】0.84

(二) 填空题

【例 1】不等式组
$$\begin{cases} x-1 > 2, \\ 2x < 8 \end{cases}$$
的解集是_____.

【参考答案】3<x<4

【能力要求】基础知识和基本技能/能按照一定的规则和步骤进行计算

【知识内容】方程与代数/一元一次不等式(组)的解法

【难度系数】0.93

【例 2】如果正比例函数 $y = kx (k 是常数, k \neq 0)$ 的图像经过点 (2, -3), 那么 y 的值 随 x 的值增大而 (填"增大"或"减小").

【参考答案】减小

【能力要求】基础知识和基本技能/掌握初中数学有关基础知识

【知识内容】函数与分析/用待定系数法求正比例函数的解析式 函数与分析/正比例函数的基本性质

【难度系数】0.96

【例 3】某校 500 名学生参加生命安全知识测试,测试分数均大于或等于 60 且小于 100,分数段的频率分布情况如表 1 所示(其中每个分数段可包括最小值,不包括最大值),结合表 1 中的信息,可得测试分数在 80-90 分数段的学生有 名.

表 1

Ī	分数段	60-70	70-80	80-90	90-100
Ī	频率	0.2	0.25		0.25

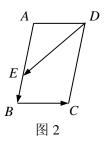
【参考答案】150

【能力要求】解决简单问题的能力/知道一些基本的数学模型,并通过运用,解决一些简单的实际问题

【知识内容】数据整理和概率统计/频率、频数的意义和计算

【难度系数】0.93

【例 4】如果将抛物线 $y = x^2 + 2x - 1$ 向上平移,使它经过点 A(0,3) ,那么所得新抛物线的表达式是_____.

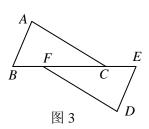

【参考答案】 $v = x^2 + 2x + 3$

【能力要求】基础知识和基本技能/领会数形结合的数学思想

【知识内容】函数与分析/二次函数的基本性质

【难度系数】0.85

【例 5】如图 2,已知在平行四边形 ABCD 中,点 E 在边 AB 上,且 AB=3EB. 设 $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{BC}=\overrightarrow{b}$,那么 $\overrightarrow{DE}=$ _____ (结果用 \overrightarrow{a} 、 \overrightarrow{b} 表示).


【参考答案】
$$\frac{2}{3}\vec{a} - \vec{b}$$

【能力要求】基础知识和基本技能/能按照一定的规则和步骤进行计算、推理

【知识内容】图形与几何/向量的表示、向量的线性运算

【难度系数】0.89

【例 6】如图 3,在 $\triangle ABC$ 和 $\triangle DEF$ 中,点B、F、C、E 在同一直线上,BF = CE ,AC // DF ,请添加一个条件,使 $\triangle ABC \cong \triangle DEF$,这个添加的条件可以是______. (只需写一个,不添加辅助线)

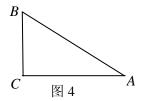
【参考答案】 $\angle A = \angle D$ 或 AC = DF 或 AB // DE 等

【能力要求】基础知识和基本技能/能按照一定的规则和步骤进行推理

【知识内容】图形与几何/全等三角形的判定

【难度系数】0.92

【例7】我们把两个三角形的重心之间的距离叫做重心距.在同一平面内有两个边长相等的等边三角形,如果当它们的一边重合时重心距为2,那么当它们的一内角成对顶角时重心距为.


【参考答案】4

【能力要求】解决简单问题的能力/会用已有的知识经验,解决新情境中的数学问题

【知识内容】图形与几何/三角形的重心

【难度系数】0.79

【例 8】如图 4,在Rt $\triangle ABC$ 中, $\angle C$ = 90°, $\angle A$ = 30°, BC = 1.点 D 在边 AC 上,将 \triangle ADB 沿直线 BD 翻折后,点 A 落在点 E 处.如果 $AD \bot ED$,那么线段 DE 的长为______.

【参考答案】 √3-1

【能力要求】空间观念/能进行几何图形的基本运动和变化

【知识内容】图形与几何/图形翻折的有关概念以及有关性质 图形与几何/直角三角形的性质、勾股定理及其逆定理

【难度系数】0.49

(三)解答题

【例 1】计算:
$$\sqrt{12} - \frac{1}{\sqrt{3}} - 8^{\frac{1}{3}} + |2 - \sqrt{3}|$$
.

【参考答案】

解: 原式 =
$$2\sqrt{3} - \frac{\sqrt{3}}{3} - 2 + 2 - \sqrt{3}$$

= $\frac{2\sqrt{3}}{3}$.

【能力要求】基础知识和基本技能/能按照一定的规则和步骤进行计算

【知识内容】数与运算/实数的运算 方程与代数/分数指数幂的概念和运算 方程与代数/二次根式的性质及运算

【难度系数】0.96

【例 2】解方程:
$$\frac{x+1}{x-1} - \frac{2}{x^2-1} = \frac{1}{x+1}$$
.

【参考答案】

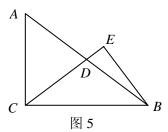
解: 去分母, ${(x+1)^2 - 2 = x - 1}$.

去括号, $(3x^2 + 2x + 1 - 2 = x - 1)$.

移项、整理得 $x^2 + x = 0$.

解方程, 得 $x_1 = -1, x_2 = 0$.

经检验: $x_1 = -1$ 是增根, 舍去; $x_2 = 0$ 是原方程的根.


所以原方程的根是x=0.

【能力要求】基础知识和基本技能/能按照一定的规则和步骤进行计算

【知识内容】方程与代数/分式方程的解法

【难度系数】0.97

【例 3】如图 5,在 Rt $\triangle ABC$ 中, $\angle ACB$ = 90°,D 是边 AB 的中点, $BE \perp CD$,垂足为点 E.已知 AC = 15, $\cos A = \frac{3}{5}$.

- (1) 求线段 CD 的长;
- (2) 求 sin∠DBE 的值.

【参考答案】

解: (1) 在Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,AC = 15, $\cos A = \frac{AC}{AB} = \frac{3}{5}$,

 $\therefore AB = 25$.

$$\therefore D \notin AB$$
的中点, $\therefore CD = \frac{AB}{2} = \frac{25}{2}$.

(2)
$$\not\equiv \text{Rt} \triangle ABC + , BC = \sqrt{AB^2 - AC^2} = 20.$$

$$\therefore BD = CD = \frac{AB}{2} = \frac{25}{2}, \quad \therefore \angle DCB = \angle DBC. \quad \therefore \cos \angle ABC = \frac{BC}{AB} = \frac{4}{5}.$$

在 Rt \triangle CEB 中, \angle E = 90°,

$$CE = BC \cdot \cos \angle BCE = BC \cdot \cos \angle ABC = 16$$
. $\therefore DE = CE - CD = \frac{7}{2}$.

在Rt $\triangle DEB$ 中, $\angle DEB = 90^{\circ}$, $\therefore \sin \angle DBE = \frac{DE}{BD} = \frac{7}{25}$.

【能力要求】

- (1)运算能力/知道有关算理,能根据问题条件,寻找和设计合理、有效的运算途径
- (2) 空间观念/能够从复杂的图形中区分基本图形,并能分析其中的基本元素及其关系

【知识内容】

- (1)图形与几何/直角三角形的性质、勾股定理及其逆定理 图形与几何/解直角三角形及其应用
- (2)图形与几何/直角三角形的性质、勾股定理及其逆定理 图形与几何/锐角三角比的概念
- 【难度系数】(1)0.95
- (2) 0.86

【例 4】已知水银体温计的读数 y (\mathbb{C})与水银柱的长度 x (cm)之间是一次函数关系. 现有一支水银体温计,其部分刻度线不清晰 (如图 6),表 2 记录的是该体温计部分清晰刻度线及其对应水银柱的长度.

表 2

水银柱的长度 x (cm)	4.2	•••	8.2	9.8
体温计的读数 y (℃)	35.0		40.0	42.0

- (1) 求 y 关于 x 的函数解析式 (不需要写出函数定义域);
- (2) 用该体温计测体温时,水银柱的长度为 6.2cm,求此时体温计的读数.

【参考答案】

解: (1) 设 y 关于 x 的函数解析式为 $y = kx + b(k \neq 0)$.

由题意,得
$$\begin{cases} 4.2k + b = 35, \\ 8.2k + b = 40. \end{cases}$$
 解得
$$\begin{cases} k = \frac{5}{4}, \\ b = \frac{119}{4}. \end{cases}$$

所以 y 关于 x 的函数解析式为 $y = \frac{5}{4}x + \frac{119}{4}$.

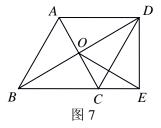
(2) 当 x = 6.2 时, y = 37.5.

答: 此时该体温计的读数为37.5℃.

【能力要求】

- (1)解决简单问题的能力/知道一些基本的数学模型,并通过运用,解决一些简单的实际问题
 - (2) 基础知识与基本技能/能按照一定的规则和步骤进行计算

【知识内容】


- (1)函数与分析/用待定系数法求一次函数的解析式 函数与分析/一次函数的应用
- (2) 函数与分析/函数以及函数值等有关概念

【难度系数】(1) 0.94

- (2) 0.90
- 【例 5】已知:如图 7,平行四边形 ABCD 的对角线相交于点 O,点 E 在边 BC 的延长线上,且 OE = OB,联结 DE .
 - (1) 求证: *DE* ⊥ *BE*;
 - (2) 如果 $OE \perp CD$, 求证: $BD \cdot CE = CD \cdot DE$.

【参考答案】

证明: (1) :: OE = OB, $:: \angle OBE = \angle OEB$.

- : 平行四边形 ABCD 的对角线相交于点 O, $\therefore OB = OD$.
- $\therefore OE = OD$.
- $\therefore \angle ODE = \angle OED$.

在 $\triangle BDE$ 中, $\because \angle OBE + \angle OEB + \angle OED + \angle ODE = 180^{\circ}$, $\therefore 2(\angle OEB + \angle OED) = 180^{\circ}$.

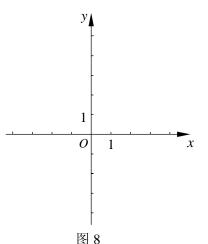
- $\therefore \angle BED = 90^{\circ}$, $PPDE \perp BE$.
- (2) \therefore *OE* \perp *CD*, \therefore \angle *CDE* + \angle *DEO* = 90°.

 $\mathcal{K}: \angle CEO + \angle DEO = 90^{\circ}, : \angle CDE = \angle CEO$.

- $\therefore \angle OBE = \angle OEB$, $\therefore \angle OBE = \angle CDE$.
- $\therefore \angle BED = \angle DEC$, $\therefore \triangle DBE \hookrightarrow \triangle CDE$.
- $\therefore \frac{BD}{CD} = \frac{DE}{CE}.$
- $\therefore BD \cdot CE = CD \cdot DE$.

【能力要求】

- (1)逻辑推理能力/能简明和有条理地表述演绎推理过程,合理解释推理演绎的正确性
- (2)空间观念/能够从复杂的图形中区分基本图形,并能分析其中的基本元素及其关系


【知识内容】

- (1)图形与几何/三角形的内角和 图形与几何/平行四边形的性质 图形与几何/等腰三角形的性质
- (2)图形与几何/相似三角形的判定和性质及其应用图形与几何/余角图形与几何/等腰三角形的性质

【难度系数】(1) 0.86

(2) 0.79

【例 6】已知在平面直角坐标系 xOy 中(如图 8),抛物线 $y = ax^2 - 4$ 与 x 轴的负半轴相交于点 A ,与 y 轴相交于点 B , $AB = 2\sqrt{5}$.点 P 在抛物线上,线段 AP 与 y 轴的正半轴相交于点 C ,线段 BP 与 x 轴相交于点 D .设点 P 的横坐标为 m .

- (1) 求这条抛物线的表达式;
- (2) 用含m 的代数式表示线段CO 的长:
- (3) 当 $\tan \angle ODC = \frac{3}{2}$ 时,求 $\angle PAD$ 的正弦值.

【参考答案】

解: (1) 由抛物线 $y = ax^2 - 4$ 与 y 轴相交于点 B , 得点 B 的坐标为 (0,-4) .

- ∴点 A 在 x 轴的负半轴上, $AB = 2\sqrt{5}$, ∴点 A 的坐标为 (-2,0) .
- :: 抛物线 $y = ax^2 4$ 与 x 轴相交于点 A, $\therefore a = 1$.
- :.这条抛物线的表达式为 $y=x^2-4$.
- (2) ∵点 P 在抛物线上, 它的横坐标为 m,
- ∴点P的坐标为 (m, m^2-4) .

由题意,得点P在第一象限内,因此m>0, $m^2-4>0$.

过点P作 $PH \perp x$ 轴, 垂足为点H.

$$: CO//PH , : \frac{CO}{PH} = \frac{AO}{AH}.$$

$$\therefore \frac{CO}{m^2-4} = \frac{2}{m+2}.$$

解得CO = 2m - 4.

(3) 过点P作 $PG \perp y$ 轴,垂足为点G.

$$\therefore OD // PG$$
, $\therefore \frac{OD}{PG} = \frac{BO}{BG}$.

$$\therefore PG = m , BO = 4 , BG = m^2 , \therefore \frac{OD}{m} = \frac{4}{m^2} , \ \text{Pr} OD = \frac{4}{m} .$$

在 Rt
$$\triangle ODC$$
 中, : $\tan \angle ODC = \frac{CO}{OD} = \frac{3}{2}$, : $2CO = 3OD$, 即 $2(2m-4) = 3 \cdot \frac{4}{m}$.

解得 m = 3 或 m = -1 (舍去).

$$\therefore CO = 2$$
.

在Rt $\triangle AOC$ 中, $AC = 2\sqrt{2}$,

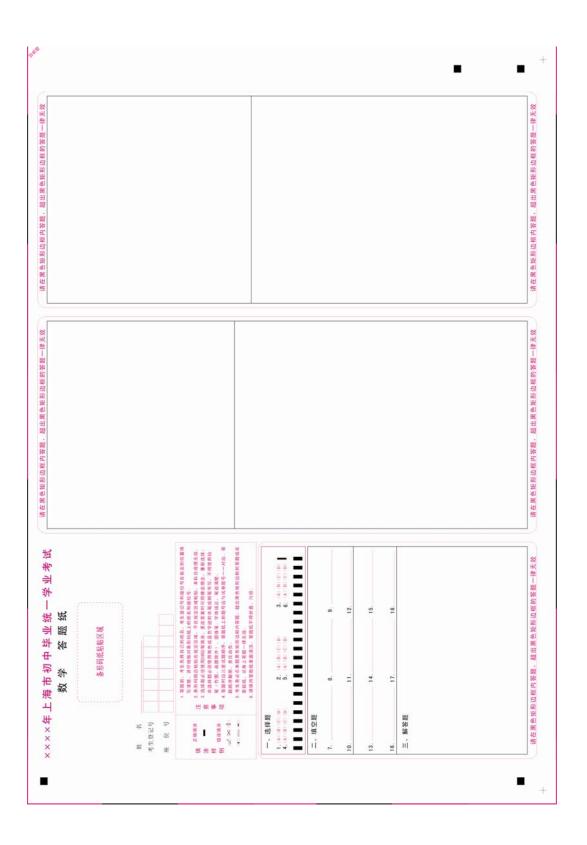
$$\therefore \sin \angle OAC = \frac{CO}{AC} = \frac{2}{2\sqrt{2}} = \frac{\sqrt{2}}{2}$$
,即 $\angle PAD$ 的正弦值为 $\frac{\sqrt{2}}{2}$.

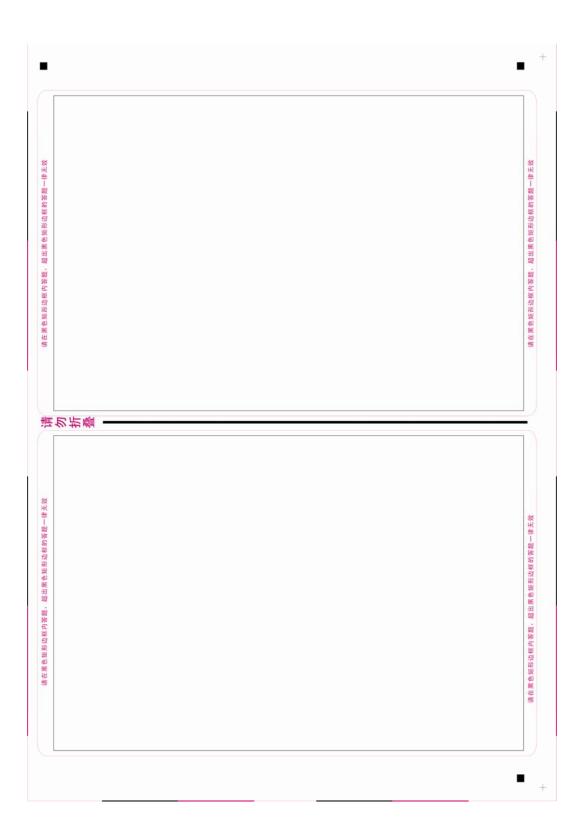
【能力要求】

- (1) 基础知识和基本技能/能按照一定的规则和步骤进行计算、画(作)图
- (2)基础知识和基本技能/能按照一定的规则和步骤进行计算、画(作)图 运算能力/知道有关算理,能根据问题条件,寻找和设计合理、有效的运算途径
- (3)逻辑推理能力/能简明和有条理地表述演绎推理过程,合理解释推理演绎的正确性 基础知识和基本技能/能按照一定的规则和步骤进行计算、画(作)图

【知识内容】

- (1)函数与分析/待定系数法求二次函数解析式 函数与分析/函数值等有关概念 图形与几何/勾股定理
- (2) 图形与几何/三角形一边的平行线的有关定理


方程与代数/一元一次方程的解法 函数与分析/函数等有关概念


(3) 图形与几何/三角形一边的平行线的有关定理 图形与几何/锐角三角比的概念 方程与代数/分式方程的解法

【难度系数】(1) 0.85 (2) 0.70 (3) 0.40

五、附录

答题纸

